Cargando…
Rhabdopleurid epibionts from the Ordovician Fezouata Shale biota and the longevity of cross-phylum interactions
Evidence of interspecific interactions in the fossil record is rare but offers valuable insights into ancient ecologies. Exceptional fossiliferous sites can preserve complex ecological interactions involving non-biomineralized organisms, but most of these examples are restricted to Cambrian Lagerstä...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567727/ https://www.ncbi.nlm.nih.gov/pubmed/37821659 http://dx.doi.org/10.1038/s42003-023-05377-x |
Sumario: | Evidence of interspecific interactions in the fossil record is rare but offers valuable insights into ancient ecologies. Exceptional fossiliferous sites can preserve complex ecological interactions involving non-biomineralized organisms, but most of these examples are restricted to Cambrian Lagerstätten. Here we report an exceptionally preserved cross-phylum interspecific interaction from the Tremadocian-aged Lower Fezouata Shale Formation of Morocco, which consists of the phragmocone of an orthocone cephalopod that has been extensively populated post-mortem by tubicolous epibionts. Well-preserved transverse bands in a zig-zag pattern and crenulations along the margin of the unbranched tubes indicate that they correspond to pterobranch hemichordates, with a close morphological similarity to rhabdopleurids based on the bush-like growth of the dense tubarium. The discovery of rhabdopleurid epibionts in the Fezouata Shale highlights the paucity of benthic graptolites, which also includes the rooted dendroids Didymograptus and Dictyonema, relative to the substantially more diverse and abundant planktic forms known from this biota. We propose that the rarity of Paleozoic rhabdopleurid epibionts is likely a consequence of their ecological requirement for hard substrates for initial settlement and growth. The Fezouata rhabdopleurid also reveals a 480-million-year-old association of pterobranchs as epibionts of molluscs that persist to the present day. |
---|