Cargando…
Large-scale genomic analyses with machine learning uncover predictive patterns associated with fungal phytopathogenic lifestyles and traits
Invasive plant pathogenic fungi have a global impact, with devastating economic and environmental effects on crops and forests. Biosurveillance, a critical component of threat mitigation, requires risk prediction based on fungal lifestyles and traits. Recent studies have revealed distinct genomic pa...
Autores principales: | Dort, E. N., Layne, E., Feau, N., Butyaev, A., Henrissat, B., Martin, F. M., Haridas, S., Salamov, A., Grigoriev, I. V., Blanchette, M., Hamelin, R. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567782/ https://www.ncbi.nlm.nih.gov/pubmed/37821494 http://dx.doi.org/10.1038/s41598-023-44005-w |
Ejemplares similares
-
RNA Biology in Fungal Phytopathogens
por: Göhre, Vera, et al.
Publicado: (2013) -
Prediction of effector protein structures from fungal phytopathogens enables evolutionary analyses
por: Seong, Kyungyong, et al.
Publicado: (2023) -
Biocontrol of fungal phytopathogens by Bacillus pumilus
por: Dobrzyński, Jakub, et al.
Publicado: (2023) -
Genome-enhanced detection and identification of fungal pathogens responsible for pine and poplar rust diseases
por: Bergeron, Marie-Josée, et al.
Publicado: (2019) -
Functional Annotation of the Ophiostoma novo-ulmi Genome: Insights into the Phytopathogenicity of the Fungal Agent of Dutch Elm Disease
por: Comeau, André M., et al.
Publicado: (2014)