Cargando…
Inherently interpretable position-aware convolutional motif kernel networks for biological sequencing data
Artificial neural networks show promising performance in detecting correlations within data that are associated with specific outcomes. However, the black-box nature of such models can hinder the knowledge advancement in research fields by obscuring the decision process and preventing scientist to f...
Autores principales: | Ditz, Jonas C., Reuter, Bernhard, Pfeifer, Nico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567796/ https://www.ncbi.nlm.nih.gov/pubmed/37821530 http://dx.doi.org/10.1038/s41598-023-44175-7 |
Ejemplares similares
-
COmic: convolutional kernel networks for interpretable end-to-end learning on (multi-)omics data
por: Ditz, Jonas C, et al.
Publicado: (2023) -
PlasmoFAB: a benchmark to foster machine learning for Plasmodium falciparum protein antigen candidate prediction
por: Ditz, Jonas C, et al.
Publicado: (2023) -
pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks
por: Budach, Stefan, et al.
Publicado: (2018) -
Representation learning of genomic sequence motifs with convolutional neural networks
por: Koo, Peter K., et al.
Publicado: (2019) -
PCA Based Kernel Initialization for Convolutional Neural Networks
por: Wang, Yifeng, et al.
Publicado: (2020)