Cargando…

cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling

MOTIVATION: Investigating the 3D structure of chromatin provides new insights into transcriptional regulation. With the evolution of 3C next-generation sequencing methods like ChiA-PET and Hi-C, the surge in data volume has highlighted the need for more efficient chromatin spatial modelling algorith...

Descripción completa

Detalles Bibliográficos
Autores principales: Wlasnowolski, Michal, Grabowski, Pawel, Roszczyk, Damian, Kaczmarski, Krzysztof, Plewczynski, Dariusz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568367/
https://www.ncbi.nlm.nih.gov/pubmed/37774005
http://dx.doi.org/10.1093/bioinformatics/btad588
_version_ 1785119346172887040
author Wlasnowolski, Michal
Grabowski, Pawel
Roszczyk, Damian
Kaczmarski, Krzysztof
Plewczynski, Dariusz
author_facet Wlasnowolski, Michal
Grabowski, Pawel
Roszczyk, Damian
Kaczmarski, Krzysztof
Plewczynski, Dariusz
author_sort Wlasnowolski, Michal
collection PubMed
description MOTIVATION: Investigating the 3D structure of chromatin provides new insights into transcriptional regulation. With the evolution of 3C next-generation sequencing methods like ChiA-PET and Hi-C, the surge in data volume has highlighted the need for more efficient chromatin spatial modelling algorithms. This study introduces the cudaMMC method, based on the Simulated Annealing Monte Carlo approach and enhanced by GPU-accelerated computing, to efficiently generate ensembles of chromatin 3D structures. RESULTS: The cudaMMC calculations demonstrate significantly faster performance with better stability compared to our previous method on the same workstation. cudaMMC also substantially reduces the computation time required for generating ensembles of large chromatin models, making it an invaluable tool for studying chromatin spatial conformation. AVAILABILITY AND IMPLEMENTATION: Open-source software and manual and sample data are freely available on https://github.com/SFGLab/cudaMMC.
format Online
Article
Text
id pubmed-10568367
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-105683672023-10-13 cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling Wlasnowolski, Michal Grabowski, Pawel Roszczyk, Damian Kaczmarski, Krzysztof Plewczynski, Dariusz Bioinformatics Applications Note MOTIVATION: Investigating the 3D structure of chromatin provides new insights into transcriptional regulation. With the evolution of 3C next-generation sequencing methods like ChiA-PET and Hi-C, the surge in data volume has highlighted the need for more efficient chromatin spatial modelling algorithms. This study introduces the cudaMMC method, based on the Simulated Annealing Monte Carlo approach and enhanced by GPU-accelerated computing, to efficiently generate ensembles of chromatin 3D structures. RESULTS: The cudaMMC calculations demonstrate significantly faster performance with better stability compared to our previous method on the same workstation. cudaMMC also substantially reduces the computation time required for generating ensembles of large chromatin models, making it an invaluable tool for studying chromatin spatial conformation. AVAILABILITY AND IMPLEMENTATION: Open-source software and manual and sample data are freely available on https://github.com/SFGLab/cudaMMC. Oxford University Press 2023-09-29 /pmc/articles/PMC10568367/ /pubmed/37774005 http://dx.doi.org/10.1093/bioinformatics/btad588 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Note
Wlasnowolski, Michal
Grabowski, Pawel
Roszczyk, Damian
Kaczmarski, Krzysztof
Plewczynski, Dariusz
cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling
title cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling
title_full cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling
title_fullStr cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling
title_full_unstemmed cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling
title_short cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling
title_sort cudammc: gpu-enhanced multiscale monte carlo chromatin 3d modelling
topic Applications Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568367/
https://www.ncbi.nlm.nih.gov/pubmed/37774005
http://dx.doi.org/10.1093/bioinformatics/btad588
work_keys_str_mv AT wlasnowolskimichal cudammcgpuenhancedmultiscalemontecarlochromatin3dmodelling
AT grabowskipawel cudammcgpuenhancedmultiscalemontecarlochromatin3dmodelling
AT roszczykdamian cudammcgpuenhancedmultiscalemontecarlochromatin3dmodelling
AT kaczmarskikrzysztof cudammcgpuenhancedmultiscalemontecarlochromatin3dmodelling
AT plewczynskidariusz cudammcgpuenhancedmultiscalemontecarlochromatin3dmodelling