Cargando…
cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling
MOTIVATION: Investigating the 3D structure of chromatin provides new insights into transcriptional regulation. With the evolution of 3C next-generation sequencing methods like ChiA-PET and Hi-C, the surge in data volume has highlighted the need for more efficient chromatin spatial modelling algorith...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568367/ https://www.ncbi.nlm.nih.gov/pubmed/37774005 http://dx.doi.org/10.1093/bioinformatics/btad588 |
_version_ | 1785119346172887040 |
---|---|
author | Wlasnowolski, Michal Grabowski, Pawel Roszczyk, Damian Kaczmarski, Krzysztof Plewczynski, Dariusz |
author_facet | Wlasnowolski, Michal Grabowski, Pawel Roszczyk, Damian Kaczmarski, Krzysztof Plewczynski, Dariusz |
author_sort | Wlasnowolski, Michal |
collection | PubMed |
description | MOTIVATION: Investigating the 3D structure of chromatin provides new insights into transcriptional regulation. With the evolution of 3C next-generation sequencing methods like ChiA-PET and Hi-C, the surge in data volume has highlighted the need for more efficient chromatin spatial modelling algorithms. This study introduces the cudaMMC method, based on the Simulated Annealing Monte Carlo approach and enhanced by GPU-accelerated computing, to efficiently generate ensembles of chromatin 3D structures. RESULTS: The cudaMMC calculations demonstrate significantly faster performance with better stability compared to our previous method on the same workstation. cudaMMC also substantially reduces the computation time required for generating ensembles of large chromatin models, making it an invaluable tool for studying chromatin spatial conformation. AVAILABILITY AND IMPLEMENTATION: Open-source software and manual and sample data are freely available on https://github.com/SFGLab/cudaMMC. |
format | Online Article Text |
id | pubmed-10568367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-105683672023-10-13 cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling Wlasnowolski, Michal Grabowski, Pawel Roszczyk, Damian Kaczmarski, Krzysztof Plewczynski, Dariusz Bioinformatics Applications Note MOTIVATION: Investigating the 3D structure of chromatin provides new insights into transcriptional regulation. With the evolution of 3C next-generation sequencing methods like ChiA-PET and Hi-C, the surge in data volume has highlighted the need for more efficient chromatin spatial modelling algorithms. This study introduces the cudaMMC method, based on the Simulated Annealing Monte Carlo approach and enhanced by GPU-accelerated computing, to efficiently generate ensembles of chromatin 3D structures. RESULTS: The cudaMMC calculations demonstrate significantly faster performance with better stability compared to our previous method on the same workstation. cudaMMC also substantially reduces the computation time required for generating ensembles of large chromatin models, making it an invaluable tool for studying chromatin spatial conformation. AVAILABILITY AND IMPLEMENTATION: Open-source software and manual and sample data are freely available on https://github.com/SFGLab/cudaMMC. Oxford University Press 2023-09-29 /pmc/articles/PMC10568367/ /pubmed/37774005 http://dx.doi.org/10.1093/bioinformatics/btad588 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Applications Note Wlasnowolski, Michal Grabowski, Pawel Roszczyk, Damian Kaczmarski, Krzysztof Plewczynski, Dariusz cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling |
title | cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling |
title_full | cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling |
title_fullStr | cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling |
title_full_unstemmed | cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling |
title_short | cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling |
title_sort | cudammc: gpu-enhanced multiscale monte carlo chromatin 3d modelling |
topic | Applications Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568367/ https://www.ncbi.nlm.nih.gov/pubmed/37774005 http://dx.doi.org/10.1093/bioinformatics/btad588 |
work_keys_str_mv | AT wlasnowolskimichal cudammcgpuenhancedmultiscalemontecarlochromatin3dmodelling AT grabowskipawel cudammcgpuenhancedmultiscalemontecarlochromatin3dmodelling AT roszczykdamian cudammcgpuenhancedmultiscalemontecarlochromatin3dmodelling AT kaczmarskikrzysztof cudammcgpuenhancedmultiscalemontecarlochromatin3dmodelling AT plewczynskidariusz cudammcgpuenhancedmultiscalemontecarlochromatin3dmodelling |