Cargando…
Machine learning-based prediction of post-stroke cognitive status using electroencephalography-derived brain network attributes
OBJECTIVES: More than half of patients with acute ischemic stroke develop post-stroke cognitive impairment (PSCI), a significant barrier to future neurological recovery. Thus, predicting cognitive trajectories post-AIS is crucial. Our primary objective is to determine whether brain network propertie...
Autores principales: | Lee, Minwoo, Hong, Yuseong, An, Sungsik, Park, Ukeob, Shin, Jaekang, Lee, Jeongjae, Oh, Mi Sun, Lee, Byung-Chul, Yu, Kyung-Ho, Lim, Jae-Sung, Kang, Seung Wan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568623/ https://www.ncbi.nlm.nih.gov/pubmed/37842126 http://dx.doi.org/10.3389/fnagi.2023.1238274 |
Ejemplares similares
-
Functional brain changes using electroencephalography after a 24-week multidomain intervention program to prevent dementia
por: Park, Hee Kyung, et al.
Publicado: (2022) -
Association between Serum Insulin-Like Growth Factor-1 and Neurological Severity in Acute Ischemic Stroke
por: Lee, Jeeun, et al.
Publicado: (2021) -
Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning
por: Lee, Minwoo, et al.
Publicado: (2023) -
Effects of Glycemic Gap on Post-Stroke Cognitive Impairment in Acute Ischemic Stroke Patients
por: Lee, Minwoo, et al.
Publicado: (2021) -
High Neutrophil–Lymphocyte Ratio Predicts Post-stroke Cognitive Impairment in Acute Ischemic Stroke Patients
por: Lee, Minwoo, et al.
Publicado: (2021)