Cargando…
MOFGalaxyNet: a social network analysis for predicting guest accessibility in metal–organic frameworks utilizing graph convolutional networks
Metal–organic frameworks (MOFs), are porous crystalline structures comprising of metal ions or clusters intricately linked with organic entities, displaying topological diversity and effortless chemical flexibility. These characteristics render them apt for multifarious applications such as adsorpti...
Autores principales: | Jalali, Mehrdad, Wonanke, A. D. Dinga, Wöll, Christof |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568891/ https://www.ncbi.nlm.nih.gov/pubmed/37821998 http://dx.doi.org/10.1186/s13321-023-00764-2 |
Ejemplares similares
-
Correction: MOFGalaxyNet: a social network analysis for predicting guest accessibility in metal–organic frameworks utilizing graph convolutional networks
por: Jalali, Mehrdad, et al.
Publicado: (2023) -
MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis
por: Jalali, Mehrdad, et al.
Publicado: (2022) -
Role of Host-Guest Interaction in Understanding Polymerisation in Metal-Organic Frameworks
por: Wonanke, A.D. Dinga, et al.
Publicado: (2021) -
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023) -
Confining H(3)PO(4) network in covalent organic frameworks enables proton super flow
por: Tao, Shanshan, et al.
Publicado: (2020)