Cargando…
Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration
[Image: see text] Predicting the rate constants of elementary reaction steps is key for the computational modeling of catalytic processes. Within transition state theory (TST), this requires an accurate estimation of the corresponding free energy barriers. While sophisticated methods for estimating...
Autores principales: | Stocker, Sina, Jung, Hyunwook, Csányi, Gábor, Goldsmith, C. Franklin, Reuter, Karsten, Margraf, Johannes T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569033/ https://www.ncbi.nlm.nih.gov/pubmed/37747812 http://dx.doi.org/10.1021/acs.jctc.3c00541 |
Ejemplares similares
-
Machine learning in chemical reaction space
por: Stocker, Sina, et al.
Publicado: (2020) -
Data-efficient machine learning for molecular crystal structure prediction
por: Wengert, Simon, et al.
Publicado: (2021) -
A Hybrid Machine Learning Approach for Structure Stability
Prediction in Molecular Co-crystal Screenings
por: Wengert, Simon, et al.
Publicado: (2022) -
Systematic Enumeration of
Elementary Reaction Steps in Surface Catalysis
por: Margraf, Johannes T., et al.
Publicado: (2019) -
Pure non-local machine-learned density functional theory for electron correlation
por: Margraf, Johannes T., et al.
Publicado: (2021)