Cargando…
Extracting Structural Information from Physicochemical Property Measurements Using Machine Learning—A New Approach for Structure Elucidation in Non-targeted Analysis
[Image: see text] Non-targeted analysis (NTA) has made critical contributions in the fields of environmental chemistry and environmental health. One critical bottleneck is the lack of available analytical standards for most chemicals in the environment. Our study aims to explore a novel approach tha...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569036/ https://www.ncbi.nlm.nih.gov/pubmed/37746919 http://dx.doi.org/10.1021/acs.est.3c03003 |
_version_ | 1785119481544048640 |
---|---|
author | Abrahamsson, Dimitri Brueck, Christopher L. Prasse, Carsten Lambropoulou, Dimitra A. Koronaiou, Lelouda-Athanasia Wang, Miaomiao Park, June-Soo Woodruff, Tracey J. |
author_facet | Abrahamsson, Dimitri Brueck, Christopher L. Prasse, Carsten Lambropoulou, Dimitra A. Koronaiou, Lelouda-Athanasia Wang, Miaomiao Park, June-Soo Woodruff, Tracey J. |
author_sort | Abrahamsson, Dimitri |
collection | PubMed |
description | [Image: see text] Non-targeted analysis (NTA) has made critical contributions in the fields of environmental chemistry and environmental health. One critical bottleneck is the lack of available analytical standards for most chemicals in the environment. Our study aims to explore a novel approach that integrates measurements of equilibrium partition ratios between organic solvents and water (K(SW)) to predictions of molecular structures. These properties can be used as a fingerprint, which with the help of a machine learning algorithm can be converted into a series of functional groups (RDKit fragments), which can be used to search chemical databases. We conducted partitioning experiments using a chemical mixture containing 185 chemicals in 10 different organic solvents and water. Both a liquid chromatography quadrupole time-of-flight mass spectrometer (LC-QTOF MS) and a LC-Orbitrap MS were used to assess the feasibility of the experimental method and the accuracy of the algorithm at predicting the correct functional groups. The two methods showed differences in log K(SW) with the QTOF method showing a mean absolute error (MAE) of 0.22 and the Orbitrap method 0.33. The differences also culminated into errors in the predictions of RDKit fragments with the MAE for the QTOF method being 0.23 and for the Orbitrap method being 0.31. Our approach presents a new angle in structure elucidation for NTA and showed promise in assisting with compound identification. |
format | Online Article Text |
id | pubmed-10569036 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-105690362023-10-13 Extracting Structural Information from Physicochemical Property Measurements Using Machine Learning—A New Approach for Structure Elucidation in Non-targeted Analysis Abrahamsson, Dimitri Brueck, Christopher L. Prasse, Carsten Lambropoulou, Dimitra A. Koronaiou, Lelouda-Athanasia Wang, Miaomiao Park, June-Soo Woodruff, Tracey J. Environ Sci Technol [Image: see text] Non-targeted analysis (NTA) has made critical contributions in the fields of environmental chemistry and environmental health. One critical bottleneck is the lack of available analytical standards for most chemicals in the environment. Our study aims to explore a novel approach that integrates measurements of equilibrium partition ratios between organic solvents and water (K(SW)) to predictions of molecular structures. These properties can be used as a fingerprint, which with the help of a machine learning algorithm can be converted into a series of functional groups (RDKit fragments), which can be used to search chemical databases. We conducted partitioning experiments using a chemical mixture containing 185 chemicals in 10 different organic solvents and water. Both a liquid chromatography quadrupole time-of-flight mass spectrometer (LC-QTOF MS) and a LC-Orbitrap MS were used to assess the feasibility of the experimental method and the accuracy of the algorithm at predicting the correct functional groups. The two methods showed differences in log K(SW) with the QTOF method showing a mean absolute error (MAE) of 0.22 and the Orbitrap method 0.33. The differences also culminated into errors in the predictions of RDKit fragments with the MAE for the QTOF method being 0.23 and for the Orbitrap method being 0.31. Our approach presents a new angle in structure elucidation for NTA and showed promise in assisting with compound identification. American Chemical Society 2023-09-25 /pmc/articles/PMC10569036/ /pubmed/37746919 http://dx.doi.org/10.1021/acs.est.3c03003 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Abrahamsson, Dimitri Brueck, Christopher L. Prasse, Carsten Lambropoulou, Dimitra A. Koronaiou, Lelouda-Athanasia Wang, Miaomiao Park, June-Soo Woodruff, Tracey J. Extracting Structural Information from Physicochemical Property Measurements Using Machine Learning—A New Approach for Structure Elucidation in Non-targeted Analysis |
title | Extracting Structural
Information from Physicochemical
Property Measurements Using Machine Learning—A New Approach
for Structure Elucidation in Non-targeted Analysis |
title_full | Extracting Structural
Information from Physicochemical
Property Measurements Using Machine Learning—A New Approach
for Structure Elucidation in Non-targeted Analysis |
title_fullStr | Extracting Structural
Information from Physicochemical
Property Measurements Using Machine Learning—A New Approach
for Structure Elucidation in Non-targeted Analysis |
title_full_unstemmed | Extracting Structural
Information from Physicochemical
Property Measurements Using Machine Learning—A New Approach
for Structure Elucidation in Non-targeted Analysis |
title_short | Extracting Structural
Information from Physicochemical
Property Measurements Using Machine Learning—A New Approach
for Structure Elucidation in Non-targeted Analysis |
title_sort | extracting structural
information from physicochemical
property measurements using machine learning—a new approach
for structure elucidation in non-targeted analysis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569036/ https://www.ncbi.nlm.nih.gov/pubmed/37746919 http://dx.doi.org/10.1021/acs.est.3c03003 |
work_keys_str_mv | AT abrahamssondimitri extractingstructuralinformationfromphysicochemicalpropertymeasurementsusingmachinelearninganewapproachforstructureelucidationinnontargetedanalysis AT brueckchristopherl extractingstructuralinformationfromphysicochemicalpropertymeasurementsusingmachinelearninganewapproachforstructureelucidationinnontargetedanalysis AT prassecarsten extractingstructuralinformationfromphysicochemicalpropertymeasurementsusingmachinelearninganewapproachforstructureelucidationinnontargetedanalysis AT lambropouloudimitraa extractingstructuralinformationfromphysicochemicalpropertymeasurementsusingmachinelearninganewapproachforstructureelucidationinnontargetedanalysis AT koronaiouleloudaathanasia extractingstructuralinformationfromphysicochemicalpropertymeasurementsusingmachinelearninganewapproachforstructureelucidationinnontargetedanalysis AT wangmiaomiao extractingstructuralinformationfromphysicochemicalpropertymeasurementsusingmachinelearninganewapproachforstructureelucidationinnontargetedanalysis AT parkjunesoo extractingstructuralinformationfromphysicochemicalpropertymeasurementsusingmachinelearninganewapproachforstructureelucidationinnontargetedanalysis AT woodrufftraceyj extractingstructuralinformationfromphysicochemicalpropertymeasurementsusingmachinelearninganewapproachforstructureelucidationinnontargetedanalysis |