Cargando…
Reducing the Cost of Neural Network Potential Generation for Reactive Molecular Systems
[Image: see text] Although machine learning potentials have recently had a substantial impact on molecular simulations, the construction of a robust training set can still become a limiting factor, especially due to the requirement of a reference ab initio simulation that covers all the relevant geo...
Autores principales: | Brezina, Krystof, Beck, Hubert, Marsalek, Ondrej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569056/ https://www.ncbi.nlm.nih.gov/pubmed/37747971 http://dx.doi.org/10.1021/acs.jctc.3c00391 |
Ejemplares similares
-
Ergodicity and parameter estimates in auditory neural circuits
por: Toth, Peter G., et al.
Publicado: (2017) -
Valence
and Core-Level X-ray Photoelectron
Spectroscopy of a Liquid Ammonia Microjet
por: Buttersack, Tillmann, et al.
Publicado: (2019) -
Machine learning potentials for complex aqueous systems made simple
por: Schran, Christoph, et al.
Publicado: (2021) -
Persistent Homology Metrics Reveal Quantum Fluctuations and Reactive Atoms in Path Integral Dynamics
por: Hu, Yunfeng, et al.
Publicado: (2021) -
Neural coding of monaural and binaural intensity at low stimulus frequencies
por: Bures, Zbynek, et al.
Publicado: (2015)