Cargando…
Study on landslide susceptibility mapping with different factor screening methods and random forest models
The number of input factors affects the prediction accuracy of a model. Factor screening plays an important role as the starting point for data input. The aim of this study is to explore the influence of different factor screening methods on the prediction results. Taking the 2014 landslide inventor...
Autores principales: | Gu, Tengfei, Li, Jia, Wang, Mingguo, Duan, Ping, Zhang, Yanke, Cheng, Libo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569556/ https://www.ncbi.nlm.nih.gov/pubmed/37824559 http://dx.doi.org/10.1371/journal.pone.0292897 |
Ejemplares similares
-
An objective absence data sampling method for landslide susceptibility mapping
por: Rabby, Yasin Wahid, et al.
Publicado: (2023) -
Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China)
por: Wang, Yue, et al.
Publicado: (2020) -
The importance of input data on landslide susceptibility mapping
por: Gaidzik, Krzysztof, et al.
Publicado: (2021) -
Deep learning-based landslide susceptibility mapping
por: Azarafza, Mohammad, et al.
Publicado: (2021) -
Application of Transformer Models to Landslide Susceptibility Mapping
por: Bao, Shuai, et al.
Publicado: (2022)