Cargando…

Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling

Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of volt...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilbers, René, Metodieva, Verjinia D., Duverdin, Sarah, Heyer, Djai B., Galakhova, Anna A., Mertens, Eline J., Versluis, Tamara D., Baayen, Johannes C., Idema, Sander, Noske, David P., Verburg, Niels, Willemse, Ronald B., de Witt Hamer, Philip C., Kole, Maarten H. P., de Kock, Christiaan P. J., Mansvelder, Huibert D., Goriounova, Natalia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569700/
https://www.ncbi.nlm.nih.gov/pubmed/37824607
http://dx.doi.org/10.1126/sciadv.ade3300
_version_ 1785119604812546048
author Wilbers, René
Metodieva, Verjinia D.
Duverdin, Sarah
Heyer, Djai B.
Galakhova, Anna A.
Mertens, Eline J.
Versluis, Tamara D.
Baayen, Johannes C.
Idema, Sander
Noske, David P.
Verburg, Niels
Willemse, Ronald B.
de Witt Hamer, Philip C.
Kole, Maarten H. P.
de Kock, Christiaan P. J.
Mansvelder, Huibert D.
Goriounova, Natalia A.
author_facet Wilbers, René
Metodieva, Verjinia D.
Duverdin, Sarah
Heyer, Djai B.
Galakhova, Anna A.
Mertens, Eline J.
Versluis, Tamara D.
Baayen, Johannes C.
Idema, Sander
Noske, David P.
Verburg, Niels
Willemse, Ronald B.
de Witt Hamer, Philip C.
Kole, Maarten H. P.
de Kock, Christiaan P. J.
Mansvelder, Huibert D.
Goriounova, Natalia A.
author_sort Wilbers, René
collection PubMed
description Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na(+)) and potassium (K(+)) currents in human pyramidal neurons can explain their fast input-output properties. Human Na(+) and K(+) currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na(+) channel densities in human neurons, the biophysical properties of Na(+) channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na(+) channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na(+) and K(+) channels enable fast input-output properties of large human pyramidal neurons.
format Online
Article
Text
id pubmed-10569700
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-105697002023-10-13 Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling Wilbers, René Metodieva, Verjinia D. Duverdin, Sarah Heyer, Djai B. Galakhova, Anna A. Mertens, Eline J. Versluis, Tamara D. Baayen, Johannes C. Idema, Sander Noske, David P. Verburg, Niels Willemse, Ronald B. de Witt Hamer, Philip C. Kole, Maarten H. P. de Kock, Christiaan P. J. Mansvelder, Huibert D. Goriounova, Natalia A. Sci Adv Neuroscience Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na(+)) and potassium (K(+)) currents in human pyramidal neurons can explain their fast input-output properties. Human Na(+) and K(+) currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na(+) channel densities in human neurons, the biophysical properties of Na(+) channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na(+) channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na(+) and K(+) channels enable fast input-output properties of large human pyramidal neurons. American Association for the Advancement of Science 2023-10-12 /pmc/articles/PMC10569700/ /pubmed/37824607 http://dx.doi.org/10.1126/sciadv.ade3300 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Neuroscience
Wilbers, René
Metodieva, Verjinia D.
Duverdin, Sarah
Heyer, Djai B.
Galakhova, Anna A.
Mertens, Eline J.
Versluis, Tamara D.
Baayen, Johannes C.
Idema, Sander
Noske, David P.
Verburg, Niels
Willemse, Ronald B.
de Witt Hamer, Philip C.
Kole, Maarten H. P.
de Kock, Christiaan P. J.
Mansvelder, Huibert D.
Goriounova, Natalia A.
Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling
title Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling
title_full Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling
title_fullStr Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling
title_full_unstemmed Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling
title_short Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling
title_sort human voltage-gated na(+) and k(+) channel properties underlie sustained fast ap signaling
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569700/
https://www.ncbi.nlm.nih.gov/pubmed/37824607
http://dx.doi.org/10.1126/sciadv.ade3300
work_keys_str_mv AT wilbersrene humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT metodievaverjiniad humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT duverdinsarah humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT heyerdjaib humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT galakhovaannaa humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT mertenselinej humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT versluistamarad humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT baayenjohannesc humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT idemasander humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT noskedavidp humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT verburgniels humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT willemseronaldb humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT dewitthamerphilipc humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT kolemaartenhp humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT dekockchristiaanpj humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT mansvelderhuibertd humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling
AT goriounovanataliaa humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling