Cargando…
Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling
Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of volt...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569700/ https://www.ncbi.nlm.nih.gov/pubmed/37824607 http://dx.doi.org/10.1126/sciadv.ade3300 |
_version_ | 1785119604812546048 |
---|---|
author | Wilbers, René Metodieva, Verjinia D. Duverdin, Sarah Heyer, Djai B. Galakhova, Anna A. Mertens, Eline J. Versluis, Tamara D. Baayen, Johannes C. Idema, Sander Noske, David P. Verburg, Niels Willemse, Ronald B. de Witt Hamer, Philip C. Kole, Maarten H. P. de Kock, Christiaan P. J. Mansvelder, Huibert D. Goriounova, Natalia A. |
author_facet | Wilbers, René Metodieva, Verjinia D. Duverdin, Sarah Heyer, Djai B. Galakhova, Anna A. Mertens, Eline J. Versluis, Tamara D. Baayen, Johannes C. Idema, Sander Noske, David P. Verburg, Niels Willemse, Ronald B. de Witt Hamer, Philip C. Kole, Maarten H. P. de Kock, Christiaan P. J. Mansvelder, Huibert D. Goriounova, Natalia A. |
author_sort | Wilbers, René |
collection | PubMed |
description | Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na(+)) and potassium (K(+)) currents in human pyramidal neurons can explain their fast input-output properties. Human Na(+) and K(+) currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na(+) channel densities in human neurons, the biophysical properties of Na(+) channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na(+) channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na(+) and K(+) channels enable fast input-output properties of large human pyramidal neurons. |
format | Online Article Text |
id | pubmed-10569700 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-105697002023-10-13 Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling Wilbers, René Metodieva, Verjinia D. Duverdin, Sarah Heyer, Djai B. Galakhova, Anna A. Mertens, Eline J. Versluis, Tamara D. Baayen, Johannes C. Idema, Sander Noske, David P. Verburg, Niels Willemse, Ronald B. de Witt Hamer, Philip C. Kole, Maarten H. P. de Kock, Christiaan P. J. Mansvelder, Huibert D. Goriounova, Natalia A. Sci Adv Neuroscience Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na(+)) and potassium (K(+)) currents in human pyramidal neurons can explain their fast input-output properties. Human Na(+) and K(+) currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na(+) channel densities in human neurons, the biophysical properties of Na(+) channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na(+) channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na(+) and K(+) channels enable fast input-output properties of large human pyramidal neurons. American Association for the Advancement of Science 2023-10-12 /pmc/articles/PMC10569700/ /pubmed/37824607 http://dx.doi.org/10.1126/sciadv.ade3300 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Neuroscience Wilbers, René Metodieva, Verjinia D. Duverdin, Sarah Heyer, Djai B. Galakhova, Anna A. Mertens, Eline J. Versluis, Tamara D. Baayen, Johannes C. Idema, Sander Noske, David P. Verburg, Niels Willemse, Ronald B. de Witt Hamer, Philip C. Kole, Maarten H. P. de Kock, Christiaan P. J. Mansvelder, Huibert D. Goriounova, Natalia A. Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling |
title | Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling |
title_full | Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling |
title_fullStr | Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling |
title_full_unstemmed | Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling |
title_short | Human voltage-gated Na(+) and K(+) channel properties underlie sustained fast AP signaling |
title_sort | human voltage-gated na(+) and k(+) channel properties underlie sustained fast ap signaling |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569700/ https://www.ncbi.nlm.nih.gov/pubmed/37824607 http://dx.doi.org/10.1126/sciadv.ade3300 |
work_keys_str_mv | AT wilbersrene humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT metodievaverjiniad humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT duverdinsarah humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT heyerdjaib humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT galakhovaannaa humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT mertenselinej humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT versluistamarad humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT baayenjohannesc humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT idemasander humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT noskedavidp humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT verburgniels humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT willemseronaldb humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT dewitthamerphilipc humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT kolemaartenhp humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT dekockchristiaanpj humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT mansvelderhuibertd humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling AT goriounovanataliaa humanvoltagegatednaandkchannelpropertiesunderliesustainedfastapsignaling |