Cargando…

Lepidopteran prolegs are novel traits, not leg homologs

Lepidopteran larvae have both thoracic legs and abdominal prolegs, yet it is unclear whether these are serial homologs. A RNA-seq analysis with various appendages of Bicyclus anynana butterfly larvae indicated that the proleg transcriptome resembles the head-horn transcriptome, a novel trait in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsuoka, Yuji, Murugesan, Suriya Narayanan, Prakash, Anupama, Monteiro, Antónia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569709/
https://www.ncbi.nlm.nih.gov/pubmed/37824626
http://dx.doi.org/10.1126/sciadv.add9389
Descripción
Sumario:Lepidopteran larvae have both thoracic legs and abdominal prolegs, yet it is unclear whether these are serial homologs. A RNA-seq analysis with various appendages of Bicyclus anynana butterfly larvae indicated that the proleg transcriptome resembles the head-horn transcriptome, a novel trait in the lepidoptera, but not a thoracic leg. Under a partial segment abdominal-A (abd-A) knockout, both thoracic leg homologs (pleuropodia) and prolegs developed in the same segment, arguing that both traits are not serial homologs. Further, three of the four coxal marker genes, Sp5, Sp6-9, and araucan, were absent from prolegs, but two endite marker genes, gooseberry and Distal-less, were expressed in prolegs, suggesting that prolegs may be using a modular endite gene-regulatory network (GRN) for their development. We propose that larval prolegs are novel traits derived from the activation of a pre-existing modular endite GRN in the abdomen using abd-A, the same Hox gene that still represses legs in more lateral positions.