Cargando…
Utilizing logistic regression to compare risk factors in disease modeling with imbalanced data: a case study in vitamin D and cancer incidence
Imbalanced data, a common challenge encountered in statistical analyses of clinical trial datasets and disease modeling, refers to the scenario where one class significantly outnumbers the other in a binary classification problem. This imbalance can lead to biased model performance, favoring the maj...
Autores principales: | Meysami, Mohammad, Kumar, Vijay, Pugh, McKayah, Lowery, Samuel Thomas, Sur, Shantanu, Mondal, Sumona, Greene, James M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569817/ https://www.ncbi.nlm.nih.gov/pubmed/37841430 http://dx.doi.org/10.3389/fonc.2023.1227842 |
Ejemplares similares
-
Imbalanced Learning Based on Logistic Discrimination
por: Guo, Huaping, et al.
Publicado: (2016) -
A descriptive study of variable discretization and cost-sensitive logistic regression on imbalanced credit data
por: Zhang, Lili, et al.
Publicado: (2019) -
Stable variable ranking and selection in regularized logistic regression for severely imbalanced big binary data
por: Nadeem, Khurram, et al.
Publicado: (2023) -
Differential Impact of COVID-19 Risk Factors on Ethnicities in the United States
por: Athavale, Prashant, et al.
Publicado: (2021) -
A Bayesian Model to Analyze the Association of Rheumatoid Arthritis With Risk Factors and Their Interactions
por: Lufkin, Leon, et al.
Publicado: (2021)