Cargando…
Stroke in children and adolescents: Analysis of electrophysiological and behavioral assessment findings of auditory processing
PURPOSE: This study aimed to analyze the auditory processing behavior of children and adolescents diagnosed with stroke and compare it with that of typically developing individuals. METHODS: This was an analytical cross-sectional study involving 48 participants aged between 7 and 17 years with adequ...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569949/ https://www.ncbi.nlm.nih.gov/pubmed/37812955 http://dx.doi.org/10.1016/j.clinsp.2023.100286 |
Sumario: | PURPOSE: This study aimed to analyze the auditory processing behavior of children and adolescents diagnosed with stroke and compare it with that of typically developing individuals. METHODS: This was an analytical cross-sectional study involving 48 participants aged between 7 and 17 years with adequate schooling for age and grade, allocated equally to two groups: Stroke (SG) and Control Groups (CG). For the SG, cases identified between 2003 and 2018 were considered. In the CG, school-aged participants with typical development were randomized. After screening for differential audiological assessment and confirmation of auditory pathway integrity at the brainstem level, binaural analyses of the auditory processing behavior were conducted using the Dichotic Digit Test (DDT), Frequency Pattern Test (FPT), and electrophysiological assessment (P300). The Shapiro-Wilk test for normality was conducted, followed by the T and Mann-Whitney tests, with a 95 % confidence level and significance offset at p < 0.05, using the SPSS software (IBM®, v. 22.) RESULTS: The CG performed better in terms of auditory processing. These differences were significant (p < 0.0001) for the binaural integration of DDT, FPT humming and Labeling, and P300 latency. The P300 results were similar; however, with a greater amplitude in the SG. CONCLUSION: This study showed that children and adolescents with stroke performed worse in electrophysiological and behavioral tests of auditory processing assessed using the auditory evoked potentials. These data reinforce the hypothesis that stroke-related lesions compromise the neural mechanisms underlying auditory processing. |
---|