Cargando…
Cascade perovskite single crystal for gamma-ray spectroscopy
The halide lead perovskite single crystals (HLPSCs) have great potential in gamma-ray detection with high attenuation coefficient, strong defects tolerance, and large mobility-lifetime product. However, mobile halide ions would migrate under high external bias, which would both weaken the gamma-ray...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570118/ https://www.ncbi.nlm.nih.gov/pubmed/37841587 http://dx.doi.org/10.1016/j.isci.2023.107935 |
Sumario: | The halide lead perovskite single crystals (HLPSCs) have great potential in gamma-ray detection with high attenuation coefficient, strong defects tolerance, and large mobility-lifetime product. However, mobile halide ions would migrate under high external bias, which would both weaken the gamma-ray response and cause additional noise. Here, we report the gamma-ray PIN photodiodes made of cascade HLPSCs including both ion-formed and electron-hole-formed electrical junctions that could suppress the ions migration and improve the charges collection. Our photodiodes based on cascade HLPSCs (MAPbBr(3)/MAPbBr(2.5)Cl(0.5)/MAPbCl(3)) show a wide halide-ion-formed depletion layer of ∼52 μm. The built-in potential along the wide ionic-formed junction ensures a high mobility-lifetime product of 1.1 × 10(−2) cm(2)V(−1). As a result, our gamma-ray PIN photodiodes exhibit compelling response to (241)Am, (137)Cs, and (60)Co; the energy resolution can reach 9.4%@59.5keV and 5.9%@662keV, respectively. This work provides a new path toward constructing high-performance gamma-ray detectors based on HLPSCs. |
---|