Cargando…
Novel machine learning approaches revolutionize protein knowledge
Breakthrough methods in machine learning (ML), protein structure prediction, and novel ultrafast structural aligners are revolutionizing structural biology. Obtaining accurate models of proteins and annotating their functions on a large scale is no longer limited by time and resources. The most rece...
Autores principales: | Bordin, Nicola, Dallago, Christian, Heinzinger, Michael, Kim, Stephanie, Littmann, Maria, Rauer, Clemens, Steinegger, Martin, Rost, Burkhard, Orengo, Christine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Trends Journals
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570143/ https://www.ncbi.nlm.nih.gov/pubmed/36504138 http://dx.doi.org/10.1016/j.tibs.2022.11.001 |
Ejemplares similares
-
Clustering FunFams using sequence embeddings improves EC purity
por: Littmann, Maria, et al.
Publicado: (2021) -
Contrastive learning on protein embeddings enlightens midnight zone
por: Heinzinger, Michael, et al.
Publicado: (2022) -
AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms
por: Bordin, Nicola, et al.
Publicado: (2023) -
Embeddings from deep learning transfer GO annotations beyond homology
por: Littmann, Maria, et al.
Publicado: (2021) -
Protein embeddings and deep learning predict binding residues for various ligand classes
por: Littmann, Maria, et al.
Publicado: (2021)