Cargando…
A spectroscopy based prototype for the noninvasive detection of diabetes from human saliva using nanohybrids acting as nanozyme
The recent prediction of diabetes to be a global pandemic invites a detection strategy preferably non-invasive, and bloodless to manage the disease and the associated complications. Here, we have synthesized chitosan polymer functionalized, organic–inorganic bio-compatible nano-hybrids of Mn(3)O(4)...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570348/ https://www.ncbi.nlm.nih.gov/pubmed/37828100 http://dx.doi.org/10.1038/s41598-023-44011-y |
Sumario: | The recent prediction of diabetes to be a global pandemic invites a detection strategy preferably non-invasive, and bloodless to manage the disease and the associated complications. Here, we have synthesized chitosan polymer functionalized, organic–inorganic bio-compatible nano-hybrids of Mn(3)O(4) nanoparticles, and characterized it by utilizing several optical methodologies for the structural characterization which shows the Michaelis Menten (MM) kinetics for glucose and alpha-amylase protein (well-known diabetes biomarkers). We have also studied the potentiality for the detection of alpha-amylase in human salivary secretion which is reported to be strongly correlated with uncontrolled hyperglycemia. Finally, we have developed a prototype for the measurement of glucose (LOD of 0.38 mg/dL, LOQ of 1.15 mg/dL) and HbA1c (LOD of 0.15% and LOQ of 0.45%) utilizing the basic knowledge in the study for the detection of uncontrolled hyperglycemia at the point-of-care. With the limited number of clinical trials, we have explored the potential of our work in combating the diabetic pandemic across the globe in near future. |
---|