Cargando…
Universal machine learning for the response of atomistic systems to external fields
Machine learned interatomic interaction potentials have enabled efficient and accurate molecular simulations of closed systems. However, external fields, which can greatly change the chemical structure and/or reactivity, have been seldom included in current machine learning models. This work propose...
Autores principales: | Zhang, Yaolong, Jiang, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570356/ https://www.ncbi.nlm.nih.gov/pubmed/37827998 http://dx.doi.org/10.1038/s41467-023-42148-y |
Ejemplares similares
-
Machine learning of correlated dihedral potentials for atomistic molecular force fields
por: Friederich, Pascal, et al.
Publicado: (2018) -
Robustness of Local
Predictions in Atomistic Machine
Learning Models
por: Chong, Sanggyu, et al.
Publicado: (2023) -
MLatom 2: An Integrative Platform for Atomistic Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2021) -
Atomistic and machine learning studies of solute segregation in metastable grain boundaries
por: Mahmood, Yasir, et al.
Publicado: (2022) -
Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications
por: Morawietz, Tobias, et al.
Publicado: (2020)