Cargando…

Multi-object detection for crowded road scene based on ML-AFP of YOLOv5

Aiming at the problem of multi-object detection such as target occlusion and tiny targets in road scenes, this paper proposes an improved YOLOv5 multi-object detection model based on ML-AFP (multi-level aggregation feature perception) mechanism. Since tiny targets such as non-motor vehicle and pedes...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yiming, Wu, Kaiwen, Kang, Wenshuo, Zhou, Yuhui, Di, Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570361/
https://www.ncbi.nlm.nih.gov/pubmed/37828051
http://dx.doi.org/10.1038/s41598-023-43458-3
Descripción
Sumario:Aiming at the problem of multi-object detection such as target occlusion and tiny targets in road scenes, this paper proposes an improved YOLOv5 multi-object detection model based on ML-AFP (multi-level aggregation feature perception) mechanism. Since tiny targets such as non-motor vehicle and pedestrians are not easily detected, this paper adds a micro target detection layer and a double head mechanism to improve the detection ability of tiny targets. Varifocal loss is used to achieve a more accurate ranking in the process of non-maximum suppression to solve the problem of target occlusion, and this paper also proposes a ML-AFP mechanism. The adaptive fusion of spatial feature information at different scales improves the expression ability of network model features, and improves the detection accuracy of the model as a whole. Our experimental results on multiple challenging datasets such as KITTI, BDD100K, and show that the accuracy, recall rate and mAP value of the proposed model are greatly improved, which solves the problem of multi-object detection in crowded road scenes.