Cargando…

METTL3/IGF2BP2 axis affects the progression of colorectal cancer by regulating m6A modification of STAG3

Colorectal cancer (CRC) is among the commonest malignant tumors of humans. Existing evidence has linked the poor prognosis of CRC with high expression of stromal antigen 3 (STAG3), but, the exact biological effect of STAG3 in CRC is still unclear. The aim of this research is to reveal the biological...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Jianmei, Peng, Feng, Zhao, Jingli, Gong, Xiaosong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570365/
https://www.ncbi.nlm.nih.gov/pubmed/37828232
http://dx.doi.org/10.1038/s41598-023-44379-x
Descripción
Sumario:Colorectal cancer (CRC) is among the commonest malignant tumors of humans. Existing evidence has linked the poor prognosis of CRC with high expression of stromal antigen 3 (STAG3), but, the exact biological effect of STAG3 in CRC is still unclear. The aim of this research is to reveal the biological function and molecular mechanism of STAG3 in CRC. To investigate the differential expression of STAG3 in CRC tissues and cell lines compared to normal colon tissues and cell lines, Western blot (WB) and quantitative real-time PCR (qRT-PCR) techniques were utilized. STAG3 N6-methyladenosine (m6A) modification level were identified using m6A RNA immunoprecipitation (MeRIP). Additionally, the functional roles of methyltransferase-like protein 3 (METTL3) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) in CRC were explored by manipulating their levels via knockdown or overexpression. Cell proliferation was evaluated through Cell Counting Kit 8 (CCK-8) and clone formation experiments, while cell migration was assessed through wound healing experiments. Furthermore, cell apoptosis was detected using flow cytometry, and the protein expressions associated with proliferation and apoptosis were detected using WB. To identify the specific binding of target genes, RIP and pull-down assays were employed. Finally, the biological function of STAG3 in vivo was investigated through a xenotransplantation mouse tumor model. In CRC tissues and cell lines, STAG3 was up-regulated and accompanied by m6A methylation. Additionally, the expression of METTL3 was found to be upregulated in CRC tissues. Knocking down METTL3 resulted in a decrease in both the m6A level and protein expression of STAG3, inhibited cell proliferation and migration while promoting apoptosis, which were restored through STAG3 overexpression. Furthermore, online prediction indicated the interaction between STAG3 mRNA and IGF2BP2 protein, which was further verified by RIP experiments. IGF2BP2 downregulation led to decreased STAG3 protein expression, cell proliferation, and migration, but increased apoptosis. However, these impacts were reversed by STAG3 overexpression. Finally, subcutaneous tumor experiments conducted in nude mice also confirmed that METTL3 regulated CRC progression through STAG3 in vivo. The METTL3/IGF2BP2/STAG3 axis affects CRC progression in an m6A modification-dependent manner. This may guide targeted therapy in CRC patients.