Cargando…
MUSE-RASA captures human dimension in climate-energy-economic models via global geoAI-ML agent datasets
This article provides a combined geospatial artificial intelligence-machine learning, geoAI-ML, agent-based, data-driven, technology-rich, bottom-up approach and datasets for capturing the human dimension in climate-energy-economy models. Seven stages were required to conduct this study and build th...
Autores principales: | Moya, Diego, Copara, Dennis, Olivo, Alexis, Castro, Christian, Giarola, Sara, Hawkes, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570386/ https://www.ncbi.nlm.nih.gov/pubmed/37828067 http://dx.doi.org/10.1038/s41597-023-02529-w |
Ejemplares similares
-
An overview of GeoAI applications in health and healthcare
por: Kamel Boulos, Maged N., et al.
Publicado: (2019) -
Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology
por: VoPham, Trang, et al.
Publicado: (2018) -
Positron emission tomography dataset of [(11)C]carbon dioxide storage in coal for geo-sequestration application
por: Jing, Yu, et al.
Publicado: (2023) -
Cholec80-CVS: An open dataset with an evaluation of Strasberg’s critical view of safety for AI
por: Ríos, Manuel Sebastián, et al.
Publicado: (2023) -
A dataset of skin lesion images collected in Argentina for the evaluation of AI tools in this population
por: Ricci Lara, María Agustina, et al.
Publicado: (2023)