Cargando…
Complexity-based graph convolutional neural network for epilepsy diagnosis in normal, acute, and chronic stages
INTRODUCTION: The automatic precision detection technology based on electroencephalography (EEG) is essential in epilepsy studies. It can provide objective proof for epilepsy diagnosis, treatment, and evaluation, thus helping doctors improve treatment efficiency. At present, the normal and acute pha...
Autores principales: | Zheng, Shiming, Zhang, Xiaopei, Song, Panpan, Hu, Yue, Gong, Xi, Peng, Xiaoling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570412/ https://www.ncbi.nlm.nih.gov/pubmed/37841676 http://dx.doi.org/10.3389/fncom.2023.1211096 |
Ejemplares similares
-
STDP-based adaptive graph convolutional networks for automatic sleep staging
por: Zhao, Yuan, et al.
Publicado: (2023) -
Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks
por: Marzullo, Aldo, et al.
Publicado: (2019) -
Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy
por: Shi, Kai, et al.
Publicado: (2023) -
Automated Detection of High-Frequency Oscillations in Epilepsy Based on a Convolutional Neural Network
por: Zuo, Rui, et al.
Publicado: (2019) -
A fused biometrics information graph convolutional neural network for effective classification of patellofemoral pain syndrome
por: Xiong, Baoping, et al.
Publicado: (2022)