Cargando…
A genome-wide association study coupled with machine learning approaches to identify influential demographic and genomic factors underlying Parkinson’s disease
Background: Despite the recent success of genome-wide association studies (GWAS) in identifying 90 independent risk loci for Parkinson’s disease (PD), the genomic underpinning of PD is still largely unknown. At the same time, accurate and reliable predictive models utilizing genomic or demographic f...
Autores principales: | Rahman, Md Asad, Liu, Jinling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570619/ https://www.ncbi.nlm.nih.gov/pubmed/37842648 http://dx.doi.org/10.3389/fgene.2023.1230579 |
Ejemplares similares
-
Editorial: Machine Learning in Genome-Wide Association Studies
por: Hu, Ting, et al.
Publicado: (2020) -
Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome
por: Rahman, Sumayah F., et al.
Publicado: (2018) -
Revisiting demographic processes in cattle with genome-wide population genetic analysis
por: Orozco-terWengel, Pablo, et al.
Publicado: (2015) -
Demographic Histories and Genome-Wide Patterns of Divergence in Incipient Species of Shorebirds
por: Wang, Xuejing, et al.
Publicado: (2019) -
Using Machine Learning to Predict Obesity Based on Genome-Wide and Epigenome-Wide Gene–Gene and Gene–Diet Interactions
por: Lee, Yu-Chi, et al.
Publicado: (2022)