Cargando…

Development of a Rare Earth Nanoprobe Enables In Vivo Real-Time Detection of Sentinel Lymph Node Metastasis of Breast Cancer Using NIR-IIb Imaging

Sentinel lymph node (SLN) biopsy plays a critical role in axillary staging of breast cancer. However, traditional SLN mapping does not accurately discern the presence or absence of metastatic disease. Detection of SLN metastasis largely hinges on examination of frozen sections or paraffin-embedded t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Yuan-Yuan, Song, Liang, Zhang, Yong-Qu, Liu, Wan-Ling, Chen, Wei-Ling, Gao, Wen-Liang, Zhang, Li-Xin, Wang, Jia-Zheng, Ming, Zi-He, Zhang, Yun, Zhang, Guo-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570679/
https://www.ncbi.nlm.nih.gov/pubmed/37540231
http://dx.doi.org/10.1158/0008-5472.CAN-22-3432
Descripción
Sumario:Sentinel lymph node (SLN) biopsy plays a critical role in axillary staging of breast cancer. However, traditional SLN mapping does not accurately discern the presence or absence of metastatic disease. Detection of SLN metastasis largely hinges on examination of frozen sections or paraffin-embedded tissues post-SLN biopsy. To improve detection of SLN metastasis, we developed a second near-infrared (NIR-II) in vivo fluorescence imaging system, pairing erbium-based rare-earth nanoparticles (ErNP) with bright down-conversion fluorescence at 1,556 nm. To visualize SLNs bearing breast cancer, ErNPs were modified by balixafortide (ErNPs@POL6326), a peptide antagonist of the chemokine receptor CXCR4. The ErNPs@POL6326 probes readily drained into SLNs when delivered subcutaneously, entering metastatic breast tumor cells specifically via CXCR4-mediated endocytosis. NIR fluorescence signals increased significantly in tumor-positive versus tumor-negative SLNs, enabling accurate determination of SLN breast cancer metastasis. In a syngeneic mouse mammary tumor model and a human breast cancer xenograft model, sensitivity for SLN metastasis detection was 92.86% and 93.33%, respectively, and specificity was 96.15% and 96.08%, respectively. Of note, the probes accurately detected both macrometastases and micrometastases in SLNs. These results overall underscore the potential of ErNPs@POL6326 for real-time visualization of SLNs and in vivo screening for SLN metastasis. SIGNIFICANCE: NIR-IIb imaging of a rare-earth nanoprobe that is specifically taken up by breast cancer cells can accurately detect breast cancer macrometastases and micrometastases in sentinel lymph nodes.