Cargando…
Cross-sectional Ct distributions from qPCR tests can provide an early warning signal for the spread of COVID-19 in communities
BACKGROUND: SARS-CoV-2 PCR testing data has been widely used for COVID-19 surveillance. Existing COVID-19 forecasting models mainly rely on case counts obtained from qPCR results, even though the binary PCR results provide a limited picture of the pandemic trajectory. Most forecasting models have fa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570742/ https://www.ncbi.nlm.nih.gov/pubmed/37841738 http://dx.doi.org/10.3389/fpubh.2023.1185720 |
_version_ | 1785119837590126592 |
---|---|
author | Sharmin, Mahfuza Manivannan, Mani Woo, David Sorel, Océane Auclair, Jared R. Gandhi, Manoj Mujawar, Imran |
author_facet | Sharmin, Mahfuza Manivannan, Mani Woo, David Sorel, Océane Auclair, Jared R. Gandhi, Manoj Mujawar, Imran |
author_sort | Sharmin, Mahfuza |
collection | PubMed |
description | BACKGROUND: SARS-CoV-2 PCR testing data has been widely used for COVID-19 surveillance. Existing COVID-19 forecasting models mainly rely on case counts obtained from qPCR results, even though the binary PCR results provide a limited picture of the pandemic trajectory. Most forecasting models have failed to accurately predict the COVID-19 waves before they occur. Recently a model utilizing cross-sectional population cycle threshold (Ct—the number of cycles required for the fluorescent signal to cross the background threshold) values obtained from PCR tests (Ct-based model) was developed to overcome the limitations of using only binary PCR results. In this study, we aimed to improve on COVID-19 forecasting models using features derived from the Ct-based model, to detect epidemic waves earlier than case-based trajectories. METHODS: PCR data was collected weekly at Northeastern University (NU) between August 2020 and January 2022. Campus and county epidemic trajectories were generated from case counts. A novel forecasting approach was developed by enhancing a recent deep learning model with Ct-based features and applied in Suffolk County and NU campus. For this, cross-sectional Ct values from PCR data were used to generate Ct-based epidemic trajectories, including effective reproductive rate (Rt) and incidence. The improvement in forecasting performance was compared using absolute errors and residual squared errors with respect to actual observed cases at the 7-day and 14-day forecasting horizons. The model was also tested prospectively over the period January 2022 to April 2022. RESULTS: Rt curves estimated from the Ct-based model indicated epidemic waves 12 to 14 days earlier than Rt curves from NU campus and Suffolk County cases, with a correlation of 0.57. Enhancing the forecasting models with Ct-based information significantly decreased absolute error (decrease of 49.4 and 221.5 for the 7 and 14-day forecasting horizons) and residual squared error (40.6 and 217.1 for the 7 and 14-day forecasting horizons) compared to the original model without Ct features. CONCLUSION: Ct-based epidemic trajectories can herald an earlier signal for impending epidemic waves in the community and forecast transmission peaks. Moreover, COVID-19 forecasting models can be enhanced using these Ct features to improve their forecasting accuracy. In this study, we make the case that public health agencies should publish Ct values along with the binary positive/negative PCR results. Early and accurate forecasting of epidemic waves can inform public health policies and countermeasures which can mitigate spread. |
format | Online Article Text |
id | pubmed-10570742 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105707422023-10-14 Cross-sectional Ct distributions from qPCR tests can provide an early warning signal for the spread of COVID-19 in communities Sharmin, Mahfuza Manivannan, Mani Woo, David Sorel, Océane Auclair, Jared R. Gandhi, Manoj Mujawar, Imran Front Public Health Public Health BACKGROUND: SARS-CoV-2 PCR testing data has been widely used for COVID-19 surveillance. Existing COVID-19 forecasting models mainly rely on case counts obtained from qPCR results, even though the binary PCR results provide a limited picture of the pandemic trajectory. Most forecasting models have failed to accurately predict the COVID-19 waves before they occur. Recently a model utilizing cross-sectional population cycle threshold (Ct—the number of cycles required for the fluorescent signal to cross the background threshold) values obtained from PCR tests (Ct-based model) was developed to overcome the limitations of using only binary PCR results. In this study, we aimed to improve on COVID-19 forecasting models using features derived from the Ct-based model, to detect epidemic waves earlier than case-based trajectories. METHODS: PCR data was collected weekly at Northeastern University (NU) between August 2020 and January 2022. Campus and county epidemic trajectories were generated from case counts. A novel forecasting approach was developed by enhancing a recent deep learning model with Ct-based features and applied in Suffolk County and NU campus. For this, cross-sectional Ct values from PCR data were used to generate Ct-based epidemic trajectories, including effective reproductive rate (Rt) and incidence. The improvement in forecasting performance was compared using absolute errors and residual squared errors with respect to actual observed cases at the 7-day and 14-day forecasting horizons. The model was also tested prospectively over the period January 2022 to April 2022. RESULTS: Rt curves estimated from the Ct-based model indicated epidemic waves 12 to 14 days earlier than Rt curves from NU campus and Suffolk County cases, with a correlation of 0.57. Enhancing the forecasting models with Ct-based information significantly decreased absolute error (decrease of 49.4 and 221.5 for the 7 and 14-day forecasting horizons) and residual squared error (40.6 and 217.1 for the 7 and 14-day forecasting horizons) compared to the original model without Ct features. CONCLUSION: Ct-based epidemic trajectories can herald an earlier signal for impending epidemic waves in the community and forecast transmission peaks. Moreover, COVID-19 forecasting models can be enhanced using these Ct features to improve their forecasting accuracy. In this study, we make the case that public health agencies should publish Ct values along with the binary positive/negative PCR results. Early and accurate forecasting of epidemic waves can inform public health policies and countermeasures which can mitigate spread. Frontiers Media S.A. 2023-09-29 /pmc/articles/PMC10570742/ /pubmed/37841738 http://dx.doi.org/10.3389/fpubh.2023.1185720 Text en Copyright © 2023 Sharmin, Manivannan, Woo, Sorel, Auclair, Gandhi and Mujawar. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Public Health Sharmin, Mahfuza Manivannan, Mani Woo, David Sorel, Océane Auclair, Jared R. Gandhi, Manoj Mujawar, Imran Cross-sectional Ct distributions from qPCR tests can provide an early warning signal for the spread of COVID-19 in communities |
title | Cross-sectional Ct distributions from qPCR tests can provide an early warning signal for the spread of COVID-19 in communities |
title_full | Cross-sectional Ct distributions from qPCR tests can provide an early warning signal for the spread of COVID-19 in communities |
title_fullStr | Cross-sectional Ct distributions from qPCR tests can provide an early warning signal for the spread of COVID-19 in communities |
title_full_unstemmed | Cross-sectional Ct distributions from qPCR tests can provide an early warning signal for the spread of COVID-19 in communities |
title_short | Cross-sectional Ct distributions from qPCR tests can provide an early warning signal for the spread of COVID-19 in communities |
title_sort | cross-sectional ct distributions from qpcr tests can provide an early warning signal for the spread of covid-19 in communities |
topic | Public Health |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570742/ https://www.ncbi.nlm.nih.gov/pubmed/37841738 http://dx.doi.org/10.3389/fpubh.2023.1185720 |
work_keys_str_mv | AT sharminmahfuza crosssectionalctdistributionsfromqpcrtestscanprovideanearlywarningsignalforthespreadofcovid19incommunities AT manivannanmani crosssectionalctdistributionsfromqpcrtestscanprovideanearlywarningsignalforthespreadofcovid19incommunities AT woodavid crosssectionalctdistributionsfromqpcrtestscanprovideanearlywarningsignalforthespreadofcovid19incommunities AT soreloceane crosssectionalctdistributionsfromqpcrtestscanprovideanearlywarningsignalforthespreadofcovid19incommunities AT auclairjaredr crosssectionalctdistributionsfromqpcrtestscanprovideanearlywarningsignalforthespreadofcovid19incommunities AT gandhimanoj crosssectionalctdistributionsfromqpcrtestscanprovideanearlywarningsignalforthespreadofcovid19incommunities AT mujawarimran crosssectionalctdistributionsfromqpcrtestscanprovideanearlywarningsignalforthespreadofcovid19incommunities |