Cargando…

Zinc oxide nanoparticles inhibit malignant progression and chemotherapy resistance of ovarian cancer cells by activating endoplasmic reticulum stress and promoting autophagy

The mortality rate of ovarian cancer (OC) is high, posing a serious threat to women's lives. Zinc oxide nanoparticles (ZnO-NPs) show great potential in the treatment of cancer. However, the mechanism of ZnO-NPs in inhibiting the malignant proliferation and chemotherapy resistance of OC has rema...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Wenli, Yang, Caihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570763/
https://www.ncbi.nlm.nih.gov/pubmed/37840563
http://dx.doi.org/10.3892/etm.2023.12207
Descripción
Sumario:The mortality rate of ovarian cancer (OC) is high, posing a serious threat to women's lives. Zinc oxide nanoparticles (ZnO-NPs) show great potential in the treatment of cancer. However, the mechanism of ZnO-NPs in inhibiting the malignant proliferation and chemotherapy resistance of OC has remained elusive. In the present study, ZnO-NPs at different concentrations were used to treat SKOV3 cells, and subsequently, analyses including the Cell Counting Kit-8 assay, EDU staining, colony-formation assay, flow cytometry, wound-healing assay, Transwell assay and western blot were used to detect cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT) and chemotherapy resistance, as well as endoplasmic reticulum stress (ERS)- and autophagy-related indicators. Finally, the mechanisms of action of ZnO-NPs on OC were examined by adding ERS inhibitor 4-phenylbutyric acid (4-PBA) and autophagy inhibitor 3-methyladenine (3-MA). It was found that ZnO-NPs inhibited SKOV3 cell proliferation, facilitated apoptosis and induced cell cycle arrest. Furthermore, ZnO-NPs inhibited the invasion, migration and EMT of SKOV3 cells. ZnO-NPs also inhibited chemotherapy resistance of SKOV3 cells. ZnO-NPs activated ERS and promoted autophagy. The addition of 4-PBA or 3-MA significantly reversed the effects of ZnO-NPs on SKOV3 cells. Overall, ZnO-NPs inhibit the malignant progression and the chemotherapy resistance of SKOV3 cells by activating ERS and promoting autophagy.