Cargando…
Effects of a short-term temperature increase on arthropod communities associated with pastures
The impact of climate change on islands is expected to cause dramatic consequences on native biodiversity. However, limited data are available for arthropod communities in island agroecosystems. In this study, we simulate a small-scale climatic change (average of +1.2°C), using Open Top Chambers (OT...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pensoft Publishers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570815/ https://www.ncbi.nlm.nih.gov/pubmed/37840604 http://dx.doi.org/10.3897/BDJ.11.e107385 |
Sumario: | The impact of climate change on islands is expected to cause dramatic consequences on native biodiversity. However, limited data are available for arthropod communities in island agroecosystems. In this study, we simulate a small-scale climatic change (average of +1.2°C), using Open Top Chambers (OTCs) in forage crops in the Azores Archipelago (Portugal) and test the responses of arthropod communities associated with intensively-managed pastures. At three sites, twenty 1 x 1 m plots were established: 10 treatment plots with OTCs and 10 control plots. Arthropods were sampled with pitfall traps on two sampling events (winter and summer of 2020). When considering all species collected, arthropods' abundance was lower in OTCs. Specific taxa, namely spiders and beetles, showed a fast response to the OTCs' presence. The assemblage of non-indigenous spiders well adapted to pastures showed a significant difference in diversity with a slightly greater richness, but lower abundance inside the warmer plots. However, the presence of OTCs resulted in a decrease in beetle richness and abundance. This decline may be attributed to the multiple effects of warming. Therefore, it is imperative to conduct further investigations to elucidate the ecological processes that underlie the observed patterns. |
---|