Cargando…

SUT-Crack: A comprehensive dataset for pavement crack detection across all methods

The SUT-Crack dataset (Sharif University of Technology Crack Dataset) presents a collection of high-quality images depicting asphalt pavement cracks specifically designed to facilitate crack detection using various deep learning methods, including classification, object detection, segmentation, etc....

Descripción completa

Detalles Bibliográficos
Autores principales: Sabouri, Mohammadreza, Sepidbar, Alireza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570945/
https://www.ncbi.nlm.nih.gov/pubmed/37840988
http://dx.doi.org/10.1016/j.dib.2023.109642
_version_ 1785119876718788608
author Sabouri, Mohammadreza
Sepidbar, Alireza
author_facet Sabouri, Mohammadreza
Sepidbar, Alireza
author_sort Sabouri, Mohammadreza
collection PubMed
description The SUT-Crack dataset (Sharif University of Technology Crack Dataset) presents a collection of high-quality images depicting asphalt pavement cracks specifically designed to facilitate crack detection using various deep learning methods, including classification, object detection, segmentation, etc. During the dataset creation process, careful consideration was given to encompass all possible crack detection challenges, such as the presence of oil stains and shadows on the pavement surface along with varying lighting conditions. The dataset comprises 130 images designed specifically for segmentation and object detection tasks. Each image is accompanied by precise ground truth annotations. This dataset is well-suited for various crack detection methods, offering accurate annotations that enhance its reliability and usefulness across diverse applications. Moreover, the images were taken from a fixed height of 672 mm above the pavement surface, enabling straightforward calibration to derive real-world crack lengths from pixel measurements. A notable feature of the SUT-Crack dataset is the inclusion of geotags, affixing each image with precise latitude and longitude coordinates. This geotagging capability allows for the visualization of the images on a map and imparting valuable geographical context to the dataset. Additionally, by dividing the original images into 200×200 pixel images, over 25,000 images were produced and then categorized into “with crack” and “without crack” classes which can be used for classification purposes. SUT-Crack is available at https://doi.org/10.17632/gsbmknrhkv.6.
format Online
Article
Text
id pubmed-10570945
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105709452023-10-14 SUT-Crack: A comprehensive dataset for pavement crack detection across all methods Sabouri, Mohammadreza Sepidbar, Alireza Data Brief Data Article The SUT-Crack dataset (Sharif University of Technology Crack Dataset) presents a collection of high-quality images depicting asphalt pavement cracks specifically designed to facilitate crack detection using various deep learning methods, including classification, object detection, segmentation, etc. During the dataset creation process, careful consideration was given to encompass all possible crack detection challenges, such as the presence of oil stains and shadows on the pavement surface along with varying lighting conditions. The dataset comprises 130 images designed specifically for segmentation and object detection tasks. Each image is accompanied by precise ground truth annotations. This dataset is well-suited for various crack detection methods, offering accurate annotations that enhance its reliability and usefulness across diverse applications. Moreover, the images were taken from a fixed height of 672 mm above the pavement surface, enabling straightforward calibration to derive real-world crack lengths from pixel measurements. A notable feature of the SUT-Crack dataset is the inclusion of geotags, affixing each image with precise latitude and longitude coordinates. This geotagging capability allows for the visualization of the images on a map and imparting valuable geographical context to the dataset. Additionally, by dividing the original images into 200×200 pixel images, over 25,000 images were produced and then categorized into “with crack” and “without crack” classes which can be used for classification purposes. SUT-Crack is available at https://doi.org/10.17632/gsbmknrhkv.6. Elsevier 2023-10-05 /pmc/articles/PMC10570945/ /pubmed/37840988 http://dx.doi.org/10.1016/j.dib.2023.109642 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Data Article
Sabouri, Mohammadreza
Sepidbar, Alireza
SUT-Crack: A comprehensive dataset for pavement crack detection across all methods
title SUT-Crack: A comprehensive dataset for pavement crack detection across all methods
title_full SUT-Crack: A comprehensive dataset for pavement crack detection across all methods
title_fullStr SUT-Crack: A comprehensive dataset for pavement crack detection across all methods
title_full_unstemmed SUT-Crack: A comprehensive dataset for pavement crack detection across all methods
title_short SUT-Crack: A comprehensive dataset for pavement crack detection across all methods
title_sort sut-crack: a comprehensive dataset for pavement crack detection across all methods
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570945/
https://www.ncbi.nlm.nih.gov/pubmed/37840988
http://dx.doi.org/10.1016/j.dib.2023.109642
work_keys_str_mv AT sabourimohammadreza sutcrackacomprehensivedatasetforpavementcrackdetectionacrossallmethods
AT sepidbaralireza sutcrackacomprehensivedatasetforpavementcrackdetectionacrossallmethods