Cargando…
Polyp characterization using deep learning and a publicly accessible polyp video database
OBJECTIVES: Convolutional neural networks (CNN) for computer‐aided diagnosis of polyps are often trained using high‐quality still images in a single chromoendoscopy imaging modality with sessile serrated lesions (SSLs) often excluded. This study developed a CNN from videos to classify polyps as aden...
Autores principales: | Kader, Rawen, Cid‐Mejias, Anton, Brandao, Patrick, Islam, Shahraz, Hebbar, Sanjith, Puyal, Juana González‐Bueno, Ahmad, Omer F., Hussein, Mohamed, Toth, Daniel, Mountney, Peter, Seward, Ed, Vega, Roser, Stoyanov, Danail, Lovat, Laurence B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570984/ https://www.ncbi.nlm.nih.gov/pubmed/36527309 http://dx.doi.org/10.1111/den.14500 |
Ejemplares similares
-
Spatio-temporal classification for polyp
diagnosis
por: González-Bueno Puyal, Juana, et al.
Publicado: (2023) -
Identifying key mechanisms leading to visual recognition errors for missed colorectal polyps using eye‐tracking technology
por: Ahmad, Omer F, et al.
Publicado: (2023) -
Automated colonoscopy withdrawal phase duration estimation using cecum detection and surgical tasks classification
por: De Carvalho, Thomas, et al.
Publicado: (2023) -
Optical diagnosis of colorectal polyps using convolutional neural networks
por: Kader, Rawen, et al.
Publicado: (2021) -
Computer-aided characterization of early cancer in Barrett’s esophagus on i-scan magnification imaging: a multicenter international study
por: Hussein, Mohamed, et al.
Publicado: (2023)