Cargando…
Extracting decision-making features from the unstructured eye movements of clinicians on glaucoma OCT reports and developing AI models to classify expertise
This study aimed to investigate the eye movement patterns of ophthalmologists with varying expertise levels during the assessment of optical coherence tomography (OCT) reports for glaucoma detection. Objectives included evaluating eye gaze metrics and patterns as a function of ophthalmic education,...
Autores principales: | Akerman, Michelle, Choudhary, Sanmati, Liebmann, Jeffrey M., Cioffi, George A., Chen, Royce W. S., Thakoor, Kaveri A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571140/ https://www.ncbi.nlm.nih.gov/pubmed/37841006 http://dx.doi.org/10.3389/fmed.2023.1251183 |
Ejemplares similares
-
Strategies to Improve Convolutional Neural Network Generalizability and Reference Standards for Glaucoma Detection From OCT Scans
por: Thakoor, Kaveri A., et al.
Publicado: (2021) -
A multimodal deep learning system to distinguish late stages of AMD and to compare expert vs. AI ocular biomarkers
por: Thakoor, Kaveri A., et al.
Publicado: (2022) -
Providing AI expertise as an infrastructure in academia
por: Piraud, Marie, et al.
Publicado: (2023) -
Comparison of Different Machine Learning Classifiers for Glaucoma Diagnosis Based on Spectralis OCT
por: Wu, Chao-Wei, et al.
Publicado: (2021) -
Eye Movement Correlates of Expertise in Visual Arts
por: Francuz, Piotr, et al.
Publicado: (2018)