Cargando…
Robust, scalable, and informative clustering for diverse biological networks
Clustering molecular data into informative groups is a primary step in extracting robust conclusions from big data. However, due to foundational issues in how they are defined and detected, such clusters are not always reliable, leading to unstable conclusions. We compare popular clustering algorith...
Autores principales: | Gaiteri, Chris, Connell, David R., Sultan, Faraz A., Iatrou, Artemis, Ng, Bernard, Szymanski, Boleslaw K., Zhang, Ada, Tasaki, Shinya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571258/ https://www.ncbi.nlm.nih.gov/pubmed/37828545 http://dx.doi.org/10.1186/s13059-023-03062-0 |
Ejemplares similares
-
Identifying robust communities and multi-community nodes by combining top-down and bottom-up approaches to clustering
por: Gaiteri, Chris, et al.
Publicado: (2015) -
SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies
por: Zhu, Jiaqiang, et al.
Publicado: (2021) -
Deep learning decodes the principles of differential gene expression
por: Tasaki, Shinya, et al.
Publicado: (2020) -
SynerClust: a highly scalable, synteny-aware orthologue clustering tool
por: Georgescu, Christophe H., et al.
Publicado: (2018) -
Clustering Deviation Index (CDI): a robust and accurate internal measure for evaluating scRNA-seq data clustering
por: Fang, Jiyuan, et al.
Publicado: (2022)