Cargando…
MGS2AMR: a gene-centric mining of metagenomic sequencing data for pathogens and their antimicrobial resistance profile
BACKGROUND: Identification of pathogenic bacteria from clinical specimens and evaluating their antimicrobial resistance (AMR) are laborious tasks that involve in vitro cultivation, isolation, and susceptibility testing. Recently, a number of methods have been developed that use machine learning algo...
Autores principales: | Van Camp, Pieter-Jan, Prasath, V. B. Surya, Haslam, David B., Porollo, Aleksey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571262/ https://www.ncbi.nlm.nih.gov/pubmed/37833777 http://dx.doi.org/10.1186/s40168-023-01674-z |
Ejemplares similares
-
SEQ2MGS: an effective tool for generating realistic artificial metagenomes from the existing sequencing data
por: Van Camp, Pieter-Jan, et al.
Publicado: (2022) -
Bioinformatics Approaches to the Understanding of Molecular Mechanisms in Antimicrobial Resistance
por: Van Camp, Pieter-Jan, et al.
Publicado: (2020) -
Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data
por: Van Camp, Pieter-Jan, et al.
Publicado: (2020) -
A fast and robust protocol for metataxonomic analysis using RNAseq data
por: Cox, Jeremy W., et al.
Publicado: (2017) -
MGS-Fast: Metagenomic shotgun data fast annotation using microbial gene catalogs
por: Brown, Stuart M, et al.
Publicado: (2019)