Cargando…
Semantic characteristic grading of pulmonary nodules based on deep neural networks
BACKGROUND: Accurate grading of semantic characteristics is helpful for radiologists to determine the probabilities of the likelihood of malignancy of a pulmonary nodule. Nevertheless, because of the complex and varied properties of pulmonary nodules, assessing semantic characteristics (SC) is a dif...
Autores principales: | Liu, Caixia, Zhao, Ruibin, Pang, Mingyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571455/ https://www.ncbi.nlm.nih.gov/pubmed/37833636 http://dx.doi.org/10.1186/s12880-023-01112-4 |
Ejemplares similares
-
Pathological lung segmentation based on random forest combined with deep model and multi-scale superpixels
por: Liu, Caixia, et al.
Publicado: (2020) -
Robust Normal Estimation for 3D LiDAR Point Clouds in Urban Environments
por: Zhao, Ruibin, et al.
Publicado: (2019) -
A Synthesizing Semantic Characteristics Lung Nodules Classification Method Based on 3D Convolutional Neural Network
por: Dong, Yanan, et al.
Publicado: (2023) -
Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images
por: Li, Wei, et al.
Publicado: (2016) -
Deep Neural Network-Based Semantic Segmentation of Microvascular Decompression Images
por: Bai, Ruifeng, et al.
Publicado: (2021)