Cargando…

Cancer origin tracing and timing in two high-risk prostate cancers using multisample whole genome analysis: prospects for personalized medicine

BACKGROUND: Prostate cancer (PrCa) genomic heterogeneity causes resistance to therapies such as androgen deprivation. Such heterogeneity can be deciphered in the context of evolutionary principles, but current clinical trials do not include evolution as an essential feature. Whether or not analysis...

Descripción completa

Detalles Bibliográficos
Autores principales: Nurminen, Anssi, Jaatinen, Serafiina, Taavitsainen, Sinja, Högnäs, Gunilla, Lesluyes, Tom, Ansari-Pour, Naser, Tolonen, Teemu, Haase, Kerstin, Koskenalho, Antti, Kankainen, Matti, Jasu, Juho, Rauhala, Hanna, Kesäniemi, Jenni, Nikupaavola, Tiia, Kujala, Paula, Rinta-Kiikka, Irina, Riikonen, Jarno, Kaipia, Antti, Murtola, Teemu, Tammela, Teuvo L., Visakorpi, Tapio, Nykter, Matti, Wedge, David C., Van Loo, Peter, Bova, G. Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571458/
https://www.ncbi.nlm.nih.gov/pubmed/37828555
http://dx.doi.org/10.1186/s13073-023-01242-y
_version_ 1785120006286082048
author Nurminen, Anssi
Jaatinen, Serafiina
Taavitsainen, Sinja
Högnäs, Gunilla
Lesluyes, Tom
Ansari-Pour, Naser
Tolonen, Teemu
Haase, Kerstin
Koskenalho, Antti
Kankainen, Matti
Jasu, Juho
Rauhala, Hanna
Kesäniemi, Jenni
Nikupaavola, Tiia
Kujala, Paula
Rinta-Kiikka, Irina
Riikonen, Jarno
Kaipia, Antti
Murtola, Teemu
Tammela, Teuvo L.
Visakorpi, Tapio
Nykter, Matti
Wedge, David C.
Van Loo, Peter
Bova, G. Steven
author_facet Nurminen, Anssi
Jaatinen, Serafiina
Taavitsainen, Sinja
Högnäs, Gunilla
Lesluyes, Tom
Ansari-Pour, Naser
Tolonen, Teemu
Haase, Kerstin
Koskenalho, Antti
Kankainen, Matti
Jasu, Juho
Rauhala, Hanna
Kesäniemi, Jenni
Nikupaavola, Tiia
Kujala, Paula
Rinta-Kiikka, Irina
Riikonen, Jarno
Kaipia, Antti
Murtola, Teemu
Tammela, Teuvo L.
Visakorpi, Tapio
Nykter, Matti
Wedge, David C.
Van Loo, Peter
Bova, G. Steven
author_sort Nurminen, Anssi
collection PubMed
description BACKGROUND: Prostate cancer (PrCa) genomic heterogeneity causes resistance to therapies such as androgen deprivation. Such heterogeneity can be deciphered in the context of evolutionary principles, but current clinical trials do not include evolution as an essential feature. Whether or not analysis of genomic data in an evolutionary context in primary prostate cancer can provide unique added value in the research and clinical domains remains an open question. METHODS: We used novel processing techniques to obtain whole genome data together with 3D anatomic and histomorphologic analysis in two men (GP5 and GP12) with high-risk PrCa undergoing radical prostatectomy. A total of 22 whole genome-sequenced sites (16 primary cancer foci and 6 lymph node metastatic) were analyzed using evolutionary reconstruction tools and spatio-evolutionary models. Probability models were used to trace spatial and chronological origins of the primary tumor and metastases, chart their genetic drivers, and distinguish metastatic and non-metastatic subclones. RESULTS: In patient GP5, CDK12 inactivation was among the first mutations, leading to a PrCa tandem duplicator phenotype and initiating the cancer around age 50, followed by rapid cancer evolution after age 57, and metastasis around age 59, 5 years prior to prostatectomy. In patient GP12, accelerated cancer progression was detected after age 54, and metastasis occurred around age 56, 3 years prior to prostatectomy. Multiple metastasis-originating events were identified in each patient and tracked anatomically. Metastasis from prostate to lymph nodes occurred strictly ipsilaterally in all 12 detected events. In this pilot, metastatic subclone content analysis appears to substantially enhance the identification of key drivers. Evolutionary analysis’ potential impact on therapy selection appears positive in these pilot cases. CONCLUSIONS: PrCa evolutionary analysis allows tracking of anatomic site of origin, timing of cancer origin and spread, and distinction of metastatic-capable from non-metastatic subclones. This enables better identification of actionable targets for therapy. If extended to larger cohorts, it appears likely that similar analyses could add substantial biological insight and clinically relevant value. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-023-01242-y.
format Online
Article
Text
id pubmed-10571458
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-105714582023-10-14 Cancer origin tracing and timing in two high-risk prostate cancers using multisample whole genome analysis: prospects for personalized medicine Nurminen, Anssi Jaatinen, Serafiina Taavitsainen, Sinja Högnäs, Gunilla Lesluyes, Tom Ansari-Pour, Naser Tolonen, Teemu Haase, Kerstin Koskenalho, Antti Kankainen, Matti Jasu, Juho Rauhala, Hanna Kesäniemi, Jenni Nikupaavola, Tiia Kujala, Paula Rinta-Kiikka, Irina Riikonen, Jarno Kaipia, Antti Murtola, Teemu Tammela, Teuvo L. Visakorpi, Tapio Nykter, Matti Wedge, David C. Van Loo, Peter Bova, G. Steven Genome Med Research BACKGROUND: Prostate cancer (PrCa) genomic heterogeneity causes resistance to therapies such as androgen deprivation. Such heterogeneity can be deciphered in the context of evolutionary principles, but current clinical trials do not include evolution as an essential feature. Whether or not analysis of genomic data in an evolutionary context in primary prostate cancer can provide unique added value in the research and clinical domains remains an open question. METHODS: We used novel processing techniques to obtain whole genome data together with 3D anatomic and histomorphologic analysis in two men (GP5 and GP12) with high-risk PrCa undergoing radical prostatectomy. A total of 22 whole genome-sequenced sites (16 primary cancer foci and 6 lymph node metastatic) were analyzed using evolutionary reconstruction tools and spatio-evolutionary models. Probability models were used to trace spatial and chronological origins of the primary tumor and metastases, chart their genetic drivers, and distinguish metastatic and non-metastatic subclones. RESULTS: In patient GP5, CDK12 inactivation was among the first mutations, leading to a PrCa tandem duplicator phenotype and initiating the cancer around age 50, followed by rapid cancer evolution after age 57, and metastasis around age 59, 5 years prior to prostatectomy. In patient GP12, accelerated cancer progression was detected after age 54, and metastasis occurred around age 56, 3 years prior to prostatectomy. Multiple metastasis-originating events were identified in each patient and tracked anatomically. Metastasis from prostate to lymph nodes occurred strictly ipsilaterally in all 12 detected events. In this pilot, metastatic subclone content analysis appears to substantially enhance the identification of key drivers. Evolutionary analysis’ potential impact on therapy selection appears positive in these pilot cases. CONCLUSIONS: PrCa evolutionary analysis allows tracking of anatomic site of origin, timing of cancer origin and spread, and distinction of metastatic-capable from non-metastatic subclones. This enables better identification of actionable targets for therapy. If extended to larger cohorts, it appears likely that similar analyses could add substantial biological insight and clinically relevant value. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-023-01242-y. BioMed Central 2023-10-12 /pmc/articles/PMC10571458/ /pubmed/37828555 http://dx.doi.org/10.1186/s13073-023-01242-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Nurminen, Anssi
Jaatinen, Serafiina
Taavitsainen, Sinja
Högnäs, Gunilla
Lesluyes, Tom
Ansari-Pour, Naser
Tolonen, Teemu
Haase, Kerstin
Koskenalho, Antti
Kankainen, Matti
Jasu, Juho
Rauhala, Hanna
Kesäniemi, Jenni
Nikupaavola, Tiia
Kujala, Paula
Rinta-Kiikka, Irina
Riikonen, Jarno
Kaipia, Antti
Murtola, Teemu
Tammela, Teuvo L.
Visakorpi, Tapio
Nykter, Matti
Wedge, David C.
Van Loo, Peter
Bova, G. Steven
Cancer origin tracing and timing in two high-risk prostate cancers using multisample whole genome analysis: prospects for personalized medicine
title Cancer origin tracing and timing in two high-risk prostate cancers using multisample whole genome analysis: prospects for personalized medicine
title_full Cancer origin tracing and timing in two high-risk prostate cancers using multisample whole genome analysis: prospects for personalized medicine
title_fullStr Cancer origin tracing and timing in two high-risk prostate cancers using multisample whole genome analysis: prospects for personalized medicine
title_full_unstemmed Cancer origin tracing and timing in two high-risk prostate cancers using multisample whole genome analysis: prospects for personalized medicine
title_short Cancer origin tracing and timing in two high-risk prostate cancers using multisample whole genome analysis: prospects for personalized medicine
title_sort cancer origin tracing and timing in two high-risk prostate cancers using multisample whole genome analysis: prospects for personalized medicine
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571458/
https://www.ncbi.nlm.nih.gov/pubmed/37828555
http://dx.doi.org/10.1186/s13073-023-01242-y
work_keys_str_mv AT nurminenanssi cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT jaatinenserafiina cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT taavitsainensinja cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT hognasgunilla cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT lesluyestom cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT ansaripournaser cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT tolonenteemu cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT haasekerstin cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT koskenalhoantti cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT kankainenmatti cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT jasujuho cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT rauhalahanna cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT kesaniemijenni cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT nikupaavolatiia cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT kujalapaula cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT rintakiikkairina cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT riikonenjarno cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT kaipiaantti cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT murtolateemu cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT tammelateuvol cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT visakorpitapio cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT nyktermatti cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT wedgedavidc cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT vanloopeter cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine
AT bovagsteven cancerorigintracingandtimingintwohighriskprostatecancersusingmultisamplewholegenomeanalysisprospectsforpersonalizedmedicine