Cargando…
A review on the research progress of traditional Chinese medicine with anti-cancer effect targeting ferroptosis
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation. It can be triggered by various mechanisms, including the glutathione peroxidase 4 (GPX4)-glutathione (GSH) axis, iron metabolism, lipid metabolism, the GTP cyclohydrolase 1 (GCH1)-tetrahyd...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571466/ https://www.ncbi.nlm.nih.gov/pubmed/37833746 http://dx.doi.org/10.1186/s13020-023-00838-1 |
Sumario: | Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation. It can be triggered by various mechanisms, including the glutathione peroxidase 4 (GPX4)-glutathione (GSH) axis, iron metabolism, lipid metabolism, the GTP cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) pathway, and the ferroptosis suppressor protein 1 (FSP1)-coenzyme Q10 axis. The redox balance is disrupted when ferroptosis occurs in cells, which is fatal to cancer cells. Additionally, some tumor-associated genes are involved in ferroptosis. Hence, targeting ferroptosis might be an effective strategy for treating cancer. Several small-molecule compounds exhibit anti-tumor effects through ferroptosis, including sorafenib and altretamine, which induce ferroptosis by inhibiting System-Xc and GPX4 respectively, but many problems, such as poor druggability, still exist. Some studies have shown that many traditional Chinese medicine (TCM) induce ferroptosis by inhibiting GPX4, solute carrier family 7 member 11 (SLC7A11), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), or by increasing the expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), transferrin (TF), and transferrin receptor 1 (TFR1). These changes can lead to the lysosomal degradation of ferritin, accumulation of iron, lipid peroxidation and the production of reactive oxygen species (ROS), which in turn can promote anti-tumor activities or synergistic effects with chemotherapeutic drugs. In this study, we elucidated the underlying mechanisms of ferroptosis, and the anti-tumor pharmacology of TCM targeting ferroptosis including prescriptions, Chinese herbs, extracts, and natural compounds. Our findings might act as valuable reference for research on anti-tumor drugs targeting ferroptosis, especially those drugs developed from TCM. |
---|