Cargando…
Towards Early Poultry Health Prediction through Non-Invasive and Computer Vision-Based Dropping Classification
SIMPLE SUMMARY: The integration of artificial intelligence and advanced computer vision techniques holds significant promise for non-invasive health assessments within the poultry industry. Monitoring poultry health through droppings can provide valuable insights as alterations in texture and color...
Autores principales: | Nakrosis, Arnas, Paulauskaite-Taraseviciene, Agne, Raudonis, Vidas, Narusis, Ignas, Gruzauskas, Valentas, Gruzauskas, Romas, Lagzdinyte-Budnike, Ingrida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571708/ https://www.ncbi.nlm.nih.gov/pubmed/37835647 http://dx.doi.org/10.3390/ani13193041 |
Ejemplares similares
-
Towards the automation of early-stage human embryo development detection
por: Raudonis, Vidas, et al.
Publicado: (2019) -
Fast Multi-Focus Fusion Based on Deep Learning for Early-Stage Embryo Image Enhancement
por: Raudonis, Vidas, et al.
Publicado: (2021) -
Application of Solid-State Fermentation for the Improving of Extruded Corn Dry-Milling By-Products and Their Protein Functional Properties
por: Zadeike, Daiva, et al.
Publicado: (2022) -
Influence of Biotreatment on Hordeum vulgare L. Cereal Wholemeal Contamination and Enzymatic Activities
por: Juodeikiene, Grazina, et al.
Publicado: (2023) -
Geriatric Care Management System Powered by the IoT and Computer Vision Techniques
por: Paulauskaite-Taraseviciene, Agne, et al.
Publicado: (2023)