Cargando…

The Effects of Commercially-Relevant Disturbances on Sleep Behaviour in Laying Hens

SIMPLE SUMMARY: The welfare of farm animals is important to the animal, farmers and consumers. Sleep is sensitive to disturbances and may be a useful tool in assessing welfare at night. The objective of this study was to look at the effects of 24 h disturbances (feed removal, increased room temperat...

Descripción completa

Detalles Bibliográficos
Autores principales: Putyora, Endre, Brocklehurst, Sarah, Sandilands, Victoria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571886/
https://www.ncbi.nlm.nih.gov/pubmed/37835711
http://dx.doi.org/10.3390/ani13193105
Descripción
Sumario:SIMPLE SUMMARY: The welfare of farm animals is important to the animal, farmers and consumers. Sleep is sensitive to disturbances and may be a useful tool in assessing welfare at night. The objective of this study was to look at the effects of 24 h disturbances (feed removal, increased room temperature, footpad pain) on sleep behaviour in laying hens. Sleep during lights-off comprised both slow-wave sleep (SWS) and rapid eye movement (REM) sleep. Averaged over all nights, behaviour during lights-off consisted of 60% SWS and 12% REM sleep, with the remaining 28% attributed to being awake. During lights-off, feed removal and footpad pain had little to no effect on behaviours, while increased room temperature nearly eliminated REM sleep and reduced SWS. During lights-on, footpad pain increased the amount of time hens spent resting and in SWS, with no effects seen for feed removal or increased temperature. Global warming and subsequent increased poultry shed temperatures are likely to result in reduced sleep and welfare in on-farm laying hens, while lack of feed and footpad pain may disrupt sleep less. ABSTRACT: Ensuring the welfare of commercially kept animals is a legal and ethical responsibility. Sleep behaviour can be sensitive to environmental perturbations and may be useful in assessing welfare state. The objective of this study was to use behavioural and electrophysiological (EEG) measures to observe the effects of 24 h stressors followed by periods of no stressors on laying hen sleep behaviour, and to investigate the use of sleep behaviour as a means of welfare assessment in commercial poultry. Ten laying hens surgically implanted with EEG devices to record their brain activity over four batches were used. Hens were subjected to undisturbed, disturbed and recovery periods for 24 h. Disturbed periods consisted of either feed deprivation, increased ambient temperature (28 °C) or simulated footpad pain via injection of Freund’s adjuvant into the footpad. Sleep state was scored using behaviour data from infrared cameras and EEG data. Over all periods, hens engaged in both SWS (average 60%) and REM sleep (average 12%) during the lights-off period. Feed deprivation and footpad pain had little to no effect on sleep states, while increased ambient temperature significantly reduced REM sleep (to near elimination, p < 0.001) and SWS (p = 0.017). During the lights-on period, footpad pain increased the proportion of time spent resting (p = 0.008) and in SWS (p < 0.001), with feed deprivation or increased ambient temperature (p > 0.05) having no effect. Increasing ambient temperatures are likely to affect sleep and welfare in commercially-kept laying hens in the face of global climate change.