Cargando…
An Intelligent Method for Predicting Pacific Oyster (Crassostrea gigas) Freshness Using Deep Learning Fused with Malondialdehyde and Total Sulfhydryl Groups Information
To achieve a non-destructive and rapid detection of oyster freshness, an intelligent method using deep learning fused with malondialdehyde (MDA) and total sulfhydryl groups (SH) information was proposed. In this study, an “MDA-SH-storage days” polynomial fitting model and oyster meat image dataset w...
Autores principales: | Lu, Tao, Yu, Fanqianhui, Han, Baokun, Guo, Jingying, Liu, Kunhua, He, Shuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572160/ https://www.ncbi.nlm.nih.gov/pubmed/37835268 http://dx.doi.org/10.3390/foods12193616 |
Ejemplares similares
-
The flavor profile changes of Pacific oysters (Crassostrea gigas) in response to salinity during depuration
por: Chen, Lipin, et al.
Publicado: (2022) -
Functional characterisation of phagocytes in the Pacific oyster Crassostrea gigas
por: Jiang, Shuai, et al.
Publicado: (2016) -
Distribution of Tetrodotoxin in Pacific Oysters (Crassostrea gigas)
por: Dhanji-Rapkova, Monika, et al.
Publicado: (2021) -
Transcriptomic Responses to Salinity Stress in the Pacific Oyster Crassostrea gigas
por: Zhao, Xuelin, et al.
Publicado: (2012) -
Genomic Landscape of Mutational Biases in the Pacific Oyster Crassostrea gigas
por: Song, Kai
Publicado: (2020)