Cargando…
Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion
This study investigates the use of encapsulating agents for establishing a synbiotic relationship with Bacillus coagulans (TISTR 1447). Various ratios of wall materials, such as skim milk powder, maltodextrin, and cellulose acetate phthalate (represented as SMC1, SMC3, SMC5, and SMC7), were examined...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572198/ https://www.ncbi.nlm.nih.gov/pubmed/37835345 http://dx.doi.org/10.3390/foods12193692 |
_version_ | 1785120178693996544 |
---|---|
author | Suwanangul, Saranya Jaichakan, Pannapapol Narkprasom, Nukrob Kraithong, Supaluck Narkprasom, Kanjana Sangsawad, Papungkorn |
author_facet | Suwanangul, Saranya Jaichakan, Pannapapol Narkprasom, Nukrob Kraithong, Supaluck Narkprasom, Kanjana Sangsawad, Papungkorn |
author_sort | Suwanangul, Saranya |
collection | PubMed |
description | This study investigates the use of encapsulating agents for establishing a synbiotic relationship with Bacillus coagulans (TISTR 1447). Various ratios of wall materials, such as skim milk powder, maltodextrin, and cellulose acetate phthalate (represented as SMC1, SMC3, SMC5, and SMC7), were examined. In all formulations, 5% inulin was included as a prebiotic. The research assessed their impact on cell viability and bioactive properties during both the spray-drying process and in vitro gastrointestinal digestion. The results demonstrate that these encapsulating agents efficiently protect B. coagulans spores during the spray-drying process, resulting in spore viability exceeding 6 log CFU/g. Notably, SMC5 and SMC7 displayed the highest spore viability values. Moreover, SMC5 showcased the most notable antioxidant activity, encompassing DPPH, hydroxy radical, and superoxide radical scavenging, as well as significant antidiabetic effects via the inhibition of α-amylase and α-glucosidase. Furthermore, during the simulated gastrointestinal digestion, both SMC5 and SMC7 exhibited a slight reduction in spore viability over the 6 h simulation. Consequently, SMC5 was identified as the optimal condition for synbiotic production, offering protection to B. coagulans spores during microencapsulation and gastrointestinal digestion while maintaining bioactive properties post-encapsulation. Synbiotic microcapsules containing SMC5 showcased a remarkable positive impact, suggesting its potential as an advanced food delivery system and a functional ingredient for various food products. |
format | Online Article Text |
id | pubmed-10572198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105721982023-10-14 Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion Suwanangul, Saranya Jaichakan, Pannapapol Narkprasom, Nukrob Kraithong, Supaluck Narkprasom, Kanjana Sangsawad, Papungkorn Foods Article This study investigates the use of encapsulating agents for establishing a synbiotic relationship with Bacillus coagulans (TISTR 1447). Various ratios of wall materials, such as skim milk powder, maltodextrin, and cellulose acetate phthalate (represented as SMC1, SMC3, SMC5, and SMC7), were examined. In all formulations, 5% inulin was included as a prebiotic. The research assessed their impact on cell viability and bioactive properties during both the spray-drying process and in vitro gastrointestinal digestion. The results demonstrate that these encapsulating agents efficiently protect B. coagulans spores during the spray-drying process, resulting in spore viability exceeding 6 log CFU/g. Notably, SMC5 and SMC7 displayed the highest spore viability values. Moreover, SMC5 showcased the most notable antioxidant activity, encompassing DPPH, hydroxy radical, and superoxide radical scavenging, as well as significant antidiabetic effects via the inhibition of α-amylase and α-glucosidase. Furthermore, during the simulated gastrointestinal digestion, both SMC5 and SMC7 exhibited a slight reduction in spore viability over the 6 h simulation. Consequently, SMC5 was identified as the optimal condition for synbiotic production, offering protection to B. coagulans spores during microencapsulation and gastrointestinal digestion while maintaining bioactive properties post-encapsulation. Synbiotic microcapsules containing SMC5 showcased a remarkable positive impact, suggesting its potential as an advanced food delivery system and a functional ingredient for various food products. MDPI 2023-10-08 /pmc/articles/PMC10572198/ /pubmed/37835345 http://dx.doi.org/10.3390/foods12193692 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Suwanangul, Saranya Jaichakan, Pannapapol Narkprasom, Nukrob Kraithong, Supaluck Narkprasom, Kanjana Sangsawad, Papungkorn Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion |
title | Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion |
title_full | Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion |
title_fullStr | Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion |
title_full_unstemmed | Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion |
title_short | Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion |
title_sort | innovative insights for establishing a synbiotic relationship with bacillus coagulans: viability, bioactivity, and in vitro-simulated gastrointestinal digestion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572198/ https://www.ncbi.nlm.nih.gov/pubmed/37835345 http://dx.doi.org/10.3390/foods12193692 |
work_keys_str_mv | AT suwanangulsaranya innovativeinsightsforestablishingasynbioticrelationshipwithbacilluscoagulansviabilitybioactivityandinvitrosimulatedgastrointestinaldigestion AT jaichakanpannapapol innovativeinsightsforestablishingasynbioticrelationshipwithbacilluscoagulansviabilitybioactivityandinvitrosimulatedgastrointestinaldigestion AT narkprasomnukrob innovativeinsightsforestablishingasynbioticrelationshipwithbacilluscoagulansviabilitybioactivityandinvitrosimulatedgastrointestinaldigestion AT kraithongsupaluck innovativeinsightsforestablishingasynbioticrelationshipwithbacilluscoagulansviabilitybioactivityandinvitrosimulatedgastrointestinaldigestion AT narkprasomkanjana innovativeinsightsforestablishingasynbioticrelationshipwithbacilluscoagulansviabilitybioactivityandinvitrosimulatedgastrointestinaldigestion AT sangsawadpapungkorn innovativeinsightsforestablishingasynbioticrelationshipwithbacilluscoagulansviabilitybioactivityandinvitrosimulatedgastrointestinaldigestion |