Cargando…
High-Carbohydrate Diet Consumption Poses a More Severe Liver Cholesterol Deposition than a High-Fat and High-Calorie Diet in Mice
In the past few decades, many researchers believed that a high-fat and high-calorie diet is the most critical factor leading to metabolic diseases. However, increasing evidence shows a high-carbohydrate and low-fat diet may also be a significant risk factor. It needs a comprehensive evaluation to pr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572265/ https://www.ncbi.nlm.nih.gov/pubmed/37834148 http://dx.doi.org/10.3390/ijms241914700 |
Sumario: | In the past few decades, many researchers believed that a high-fat and high-calorie diet is the most critical factor leading to metabolic diseases. However, increasing evidence shows a high-carbohydrate and low-fat diet may also be a significant risk factor. It needs a comprehensive evaluation to prove which viewpoint is more persuasive. We systematically compared the effects of high-fat and high-calorie diets and high-carbohydrate and low-fat ones on glycolipid metabolism in mice to evaluate and compare the effects of different dietary patterns on metabolic changes in mice. Sixty 8-week-old male C57BL/6 mice were divided into four groups after acclimatization and 15% (F-15), 25% (F-25), 35% (F-35), and 45% (F-45) of their dietary energy was derived from fat for 24 weeks. The body weight, body-fat percentage, fasting blood glucose, lipid content in the serum, and triglyceride content in the livers of mice showed a significantly positive correlation with dietary oil supplementation. Interestingly, the total cholesterol content in the livers of mice in the F-15 group was significantly higher than that in other groups (p < 0.05). Compared with the F-45 group, the mRNA expression of sterol synthesis and absorption-related genes (e.g., Asgr1, mTorc1, Ucp20, Srebp2, Hmgcr, and Ldlr), liver fibrosis-related genes (e.g., Col4a1 and Adamts1) and inflammation-related genes (e.g., Il-1β and Il-6) were significantly higher in the F-15 group. Compared with the F-45 group, the relative abundance of unclassified_f_Lachnospiraceae and Akkermansia was decreased in the F-15 group. While unclassified_f_Lachnospiraceae and Akkermansia are potentially beneficial bacteria, they have the ability to produce short-chain fatty acids and modulate cholesterol metabolism. In addition, the relative abundance of unclassified_f_Lachnospiraceae and Akkermansia was significantly positively correlated with fatty acid transporters expression and negatively correlated with that of cholesteryl acyltransferase 1 and cholesterol synthesis-related genes. In conclusion, our study delineated how a high-fat and high-calorie diet (fat supplied higher than or equal to 35%) induced obesity and hepatic lipid deposition in mice. Although the high-carbohydrate and low-fat diet did not cause weight gain in mice, it induced cholesterol deposition in the liver. The mechanism is mainly through the induction of endogenous synthesis of cholesterol in mice liver through the ASGR1-mTORC1-USP20-HMGCR signaling pathway. The appropriate oil and carbon water ratio (dietary energy supply from fat of 25%) showed the best gluco-lipid metabolic homeostasis in mice. |
---|