Cargando…
Understanding the Relationship between the Molecular Structure and Physicochemical Properties of Soft Rice Starch
The relationship between the molecular structure and physicochemical properties of soft rice starch (SRS) has been investigated in this research. The amylose content of SRS ranged from 10.76% to 11.85%, classified as the very low amylose type. Compared to waxy and japonica rice starch, the largest a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572268/ https://www.ncbi.nlm.nih.gov/pubmed/37835265 http://dx.doi.org/10.3390/foods12193611 |
Sumario: | The relationship between the molecular structure and physicochemical properties of soft rice starch (SRS) has been investigated in this research. The amylose content of SRS ranged from 10.76% to 11.85%, classified as the very low amylose type. Compared to waxy and japonica rice starch, the largest amount of small starch granules and the highest viscosity were shown in the SRS. The results of X-ray diffraction and Fourier transform infrared proved that the SRS depicted a typical A-type pattern with a low short-range ordered structure. Additionally, SRS had a great deal of A and B(1) chains. Molecular weights and density of starch from soft rice were lower than those from waxy rice but higher than those from japonica rice. Furthermore, SRS possessed a higher amount of resistant starch. Correlation analysis indicated that the amylose content and the chain-length distributions of amylopectin play a major role in influencing the molecular structure and physicochemical properties of rice starch. In conclusion, the low amylose content, highest viscosity, and other excellent properties of soft rice starch make it have bright application prospects in instant rice and rice cakes. |
---|