Cargando…

Water Extract of Angelica dahurica Inhibits Osteoclast Differentiation and Bone Loss

Angelica dahurica radix has a long history of traditional use in China and Korea for treating headaches, cold-damp pain and skin diseases. Despite various pharmacological studies on A. dahurica, its impact on bones remains unclear. Hence, this study investigated the inhibitory effect of A. dahurica’...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Dong Ryun, Yang, Hyun, Kim, Seong Cheol, Hwang, Youn-Hwan, Ha, Hyunil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572401/
https://www.ncbi.nlm.nih.gov/pubmed/37834161
http://dx.doi.org/10.3390/ijms241914715
Descripción
Sumario:Angelica dahurica radix has a long history of traditional use in China and Korea for treating headaches, cold-damp pain and skin diseases. Despite various pharmacological studies on A. dahurica, its impact on bones remains unclear. Hence, this study investigated the inhibitory effect of A. dahurica’s radix water extract (WEAD) on osteoclast differentiation. In vitro experiments showed that WEAD effectively suppresses osteoclast differentiation. Treatment of an osteoclast precursor with WEAD significantly suppressed the expression of nuclear factor of activated T-cells 1 (NFATc1), essential transcription factor for osteoclastogenesis, while increasing the expression of negative regulators, interferon regulatory factor 8 (Irf8) and v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MafB). Consistent with the in vitro findings, the oral administration of WEAD (100 and 300 mg/kg/day) to mice subjected to surgical ovariectomy for a duration of six weeks alleviated bone loss, while also mitigating weight gain and liver fat accumulation. In addition, we also identified phytochemicals present in WEAD, known to regulate osteoclastogenesis and/or bone loss. These results suggest the potential use of WEAD for treating various bone disorders caused by excessive bone resorption.