Cargando…
A Single-Tube Colorimetric Loop-Mediated Isothermal Amplification for Rapid Detection of SARS-CoV-2 RNA
Since SARS-CoV-2 is a highly transmissible virus, a rapid and accurate diagnostic method is necessary to prevent virus spread. We aimed to develop and evaluate a new rapid colorimetric reverse transcription loop--mediated isothermal amplification (RT-LAMP) assay for SARS-CoV-2 detection in a single...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572433/ https://www.ncbi.nlm.nih.gov/pubmed/37835783 http://dx.doi.org/10.3390/diagnostics13193040 |
Sumario: | Since SARS-CoV-2 is a highly transmissible virus, a rapid and accurate diagnostic method is necessary to prevent virus spread. We aimed to develop and evaluate a new rapid colorimetric reverse transcription loop--mediated isothermal amplification (RT-LAMP) assay for SARS-CoV-2 detection in a single closed tube. Nasopharyngeal and throat swabs collected from at-risk individuals testing for SARS-CoV-2 were used to assess the sensitivity and specificity of a new RT-LAMP assay against a commercial qRT-PCR assay. Total RNA extracts were submitted to the RT-LAMP reaction under optimal conditions and amplified at 65 °C for 30 min using three sets of specific primers targeting the nucleocapsid gene. The reaction was detected using two different indicator dyes, hydroxynaphthol blue (HNB) and cresol red. A total of 82 samples were used for detection with HNB and 94 samples with cresol red, and results were compared with the qRT-PCR assay. The sensitivity of the RT-LAMP-based HNB assay was 92.1% and the specificity was 93.2%. The sensitivity of the RT-LAMP-based cresol red assay was 80.3%, and the specificity was 97%. This colorimetric feature makes this assay highly accessible, low-cost, and user-friendly, which can be deployed for massive scale-up and rapid diagnosis of SARS-CoV-2 infection, particularly in low-resource settings. |
---|