Cargando…
Monitoring and Predicting Health Status in Neurological Patients: The ALAMEDA Data Collection Protocol
(1) Objective: We explore the predictive power of a novel stream of patient data, combining wearable devices and patient reported outcomes (PROs), using an AI-first approach to classify the health status of Parkinson’s disease (PD), multiple sclerosis (MS) and stroke patients (collectively named PMS...
Autores principales: | Sorici, Alexandru, Băjenaru, Lidia, Mocanu, Irina Georgiana, Florea, Adina Magda, Tsakanikas, Panagiotis, Ribigan, Athena Cristina, Pedullà, Ludovico, Bougea, Anastasia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572511/ https://www.ncbi.nlm.nih.gov/pubmed/37830693 http://dx.doi.org/10.3390/healthcare11192656 |
Ejemplares similares
-
Shared Decision-Making to Improve Health-Related Outcomes for Adults with Stroke Disease
por: Bajenaru, Lidia, et al.
Publicado: (2023) -
The AMIRO Social Robotics Framework: Deployment and Evaluation on the Pepper Robot
por: Ghiță, Alexandra Ștefania, et al.
Publicado: (2020) -
Mobile App Interventions for Parkinson’s Disease, Multiple Sclerosis and Stroke: A Systematic Literature Review
por: Triantafyllidis, Andreas, et al.
Publicado: (2023) -
Nociceptive pain unmasking a serious pathology – paraneoplastic hypertrophic osteoarthropathy: A case report
por: Ribigan, Athena Cristina, et al.
Publicado: (2019) -
La Alameda Central /
por: Pasquel, Leonardo
Publicado: (1980)