Cargando…

Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning

This study aims to investigate the feasibility of using diffuse reflectance spectroscopy (DRS) to distinguish malignant breast tissue from adjacent healthy tissue, and to evaluate if an extended-wavelength range (450–1550 nm) has an advantage over the standard wavelength range (450–900 nm). Multivar...

Descripción completa

Detalles Bibliográficos
Autores principales: Chaudhry, Nadia, Albinsson, John, Cinthio, Magnus, Kröll, Stefan, Malmsjö, Malin, Rydén, Lisa, Sheikh, Rafi, Reistad, Nina, Zackrisson, Sophia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572577/
https://www.ncbi.nlm.nih.gov/pubmed/37835819
http://dx.doi.org/10.3390/diagnostics13193076
_version_ 1785120265625141248
author Chaudhry, Nadia
Albinsson, John
Cinthio, Magnus
Kröll, Stefan
Malmsjö, Malin
Rydén, Lisa
Sheikh, Rafi
Reistad, Nina
Zackrisson, Sophia
author_facet Chaudhry, Nadia
Albinsson, John
Cinthio, Magnus
Kröll, Stefan
Malmsjö, Malin
Rydén, Lisa
Sheikh, Rafi
Reistad, Nina
Zackrisson, Sophia
author_sort Chaudhry, Nadia
collection PubMed
description This study aims to investigate the feasibility of using diffuse reflectance spectroscopy (DRS) to distinguish malignant breast tissue from adjacent healthy tissue, and to evaluate if an extended-wavelength range (450–1550 nm) has an advantage over the standard wavelength range (450–900 nm). Multivariate statistics and machine learning algorithms, either linear discriminant analysis (LDA) or support vector machine (SVM) are used to distinguish the two tissue types in breast specimens (total or partial mastectomy) from 23 female patients with primary breast cancer. EW-DRS has a sensitivity of 94% and specificity of 91% as compared to a sensitivity of 40% and specificity of 71% using the standard wavelength range. The results suggest that DRS can discriminate between malignant and healthy breast tissue, with improved outcomes using an extended wavelength. It is also possible to construct a simple analytical model to improve the diagnostic performance of the DRS technique.
format Online
Article
Text
id pubmed-10572577
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105725772023-10-14 Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning Chaudhry, Nadia Albinsson, John Cinthio, Magnus Kröll, Stefan Malmsjö, Malin Rydén, Lisa Sheikh, Rafi Reistad, Nina Zackrisson, Sophia Diagnostics (Basel) Article This study aims to investigate the feasibility of using diffuse reflectance spectroscopy (DRS) to distinguish malignant breast tissue from adjacent healthy tissue, and to evaluate if an extended-wavelength range (450–1550 nm) has an advantage over the standard wavelength range (450–900 nm). Multivariate statistics and machine learning algorithms, either linear discriminant analysis (LDA) or support vector machine (SVM) are used to distinguish the two tissue types in breast specimens (total or partial mastectomy) from 23 female patients with primary breast cancer. EW-DRS has a sensitivity of 94% and specificity of 91% as compared to a sensitivity of 40% and specificity of 71% using the standard wavelength range. The results suggest that DRS can discriminate between malignant and healthy breast tissue, with improved outcomes using an extended wavelength. It is also possible to construct a simple analytical model to improve the diagnostic performance of the DRS technique. MDPI 2023-09-28 /pmc/articles/PMC10572577/ /pubmed/37835819 http://dx.doi.org/10.3390/diagnostics13193076 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chaudhry, Nadia
Albinsson, John
Cinthio, Magnus
Kröll, Stefan
Malmsjö, Malin
Rydén, Lisa
Sheikh, Rafi
Reistad, Nina
Zackrisson, Sophia
Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning
title Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning
title_full Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning
title_fullStr Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning
title_full_unstemmed Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning
title_short Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning
title_sort breast cancer diagnosis using extended-wavelength–diffuse reflectance spectroscopy (ew-drs)—proof of concept in ex vivo breast specimens using machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572577/
https://www.ncbi.nlm.nih.gov/pubmed/37835819
http://dx.doi.org/10.3390/diagnostics13193076
work_keys_str_mv AT chaudhrynadia breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning
AT albinssonjohn breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning
AT cinthiomagnus breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning
AT krollstefan breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning
AT malmsjomalin breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning
AT rydenlisa breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning
AT sheikhrafi breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning
AT reistadnina breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning
AT zackrissonsophia breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning