Cargando…
Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning
This study aims to investigate the feasibility of using diffuse reflectance spectroscopy (DRS) to distinguish malignant breast tissue from adjacent healthy tissue, and to evaluate if an extended-wavelength range (450–1550 nm) has an advantage over the standard wavelength range (450–900 nm). Multivar...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572577/ https://www.ncbi.nlm.nih.gov/pubmed/37835819 http://dx.doi.org/10.3390/diagnostics13193076 |
_version_ | 1785120265625141248 |
---|---|
author | Chaudhry, Nadia Albinsson, John Cinthio, Magnus Kröll, Stefan Malmsjö, Malin Rydén, Lisa Sheikh, Rafi Reistad, Nina Zackrisson, Sophia |
author_facet | Chaudhry, Nadia Albinsson, John Cinthio, Magnus Kröll, Stefan Malmsjö, Malin Rydén, Lisa Sheikh, Rafi Reistad, Nina Zackrisson, Sophia |
author_sort | Chaudhry, Nadia |
collection | PubMed |
description | This study aims to investigate the feasibility of using diffuse reflectance spectroscopy (DRS) to distinguish malignant breast tissue from adjacent healthy tissue, and to evaluate if an extended-wavelength range (450–1550 nm) has an advantage over the standard wavelength range (450–900 nm). Multivariate statistics and machine learning algorithms, either linear discriminant analysis (LDA) or support vector machine (SVM) are used to distinguish the two tissue types in breast specimens (total or partial mastectomy) from 23 female patients with primary breast cancer. EW-DRS has a sensitivity of 94% and specificity of 91% as compared to a sensitivity of 40% and specificity of 71% using the standard wavelength range. The results suggest that DRS can discriminate between malignant and healthy breast tissue, with improved outcomes using an extended wavelength. It is also possible to construct a simple analytical model to improve the diagnostic performance of the DRS technique. |
format | Online Article Text |
id | pubmed-10572577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105725772023-10-14 Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning Chaudhry, Nadia Albinsson, John Cinthio, Magnus Kröll, Stefan Malmsjö, Malin Rydén, Lisa Sheikh, Rafi Reistad, Nina Zackrisson, Sophia Diagnostics (Basel) Article This study aims to investigate the feasibility of using diffuse reflectance spectroscopy (DRS) to distinguish malignant breast tissue from adjacent healthy tissue, and to evaluate if an extended-wavelength range (450–1550 nm) has an advantage over the standard wavelength range (450–900 nm). Multivariate statistics and machine learning algorithms, either linear discriminant analysis (LDA) or support vector machine (SVM) are used to distinguish the two tissue types in breast specimens (total or partial mastectomy) from 23 female patients with primary breast cancer. EW-DRS has a sensitivity of 94% and specificity of 91% as compared to a sensitivity of 40% and specificity of 71% using the standard wavelength range. The results suggest that DRS can discriminate between malignant and healthy breast tissue, with improved outcomes using an extended wavelength. It is also possible to construct a simple analytical model to improve the diagnostic performance of the DRS technique. MDPI 2023-09-28 /pmc/articles/PMC10572577/ /pubmed/37835819 http://dx.doi.org/10.3390/diagnostics13193076 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chaudhry, Nadia Albinsson, John Cinthio, Magnus Kröll, Stefan Malmsjö, Malin Rydén, Lisa Sheikh, Rafi Reistad, Nina Zackrisson, Sophia Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning |
title | Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning |
title_full | Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning |
title_fullStr | Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning |
title_full_unstemmed | Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning |
title_short | Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW-DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning |
title_sort | breast cancer diagnosis using extended-wavelength–diffuse reflectance spectroscopy (ew-drs)—proof of concept in ex vivo breast specimens using machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572577/ https://www.ncbi.nlm.nih.gov/pubmed/37835819 http://dx.doi.org/10.3390/diagnostics13193076 |
work_keys_str_mv | AT chaudhrynadia breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning AT albinssonjohn breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning AT cinthiomagnus breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning AT krollstefan breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning AT malmsjomalin breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning AT rydenlisa breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning AT sheikhrafi breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning AT reistadnina breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning AT zackrissonsophia breastcancerdiagnosisusingextendedwavelengthdiffusereflectancespectroscopyewdrsproofofconceptinexvivobreastspecimensusingmachinelearning |