Cargando…
Evaluating Deep Q-Learning Algorithms for Controlling Blood Glucose in In Silico Type 1 Diabetes
Patients with type 1 diabetes must continually decide how much insulin to inject before each meal to maintain blood glucose levels within a healthy range. Recent research has worked on a solution for this burden, showing the potential of reinforcement learning as an emerging approach for the task of...
Autores principales: | Tejedor, Miguel, Hjerde, Sigurd Nordtveit, Myhre, Jonas Nordhaug, Godtliebsen, Fred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572616/ https://www.ncbi.nlm.nih.gov/pubmed/37835893 http://dx.doi.org/10.3390/diagnostics13193150 |
Ejemplares similares
-
Automatic detection of the mental foramen for estimating mandibular
cortical width in dental panoramic radiographs: the seventh survey of the Tromsø
Study (Tromsø7) in 2015–2016
por: Edvardsen, Isak Paasche, et al.
Publicado: (2022) -
Control of Blood Glucose for Type-1 Diabetes by Using Reinforcement Learning with Feedforward Algorithm
por: Ngo, Phuong D., et al.
Publicado: (2018) -
Scale Space Methods for Analysis of Type 2 Diabetes Patients' Blood Glucose Values
por: Skrøvseth, Stein Olav, et al.
Publicado: (2011) -
The applications of deep learning algorithms on in silico druggable proteins identification
por: Yu, Lezheng, et al.
Publicado: (2022) -
qInward variability-based in-silico proarrhythmic risk assessment of drugs using deep learning model
por: Jeong, Da Un, et al.
Publicado: (2022)