Cargando…
Application of Iron Nanoparticles Synthesized from a Bioflocculant Produced by Yeast Strain Pichia kudriavzevii Obtained from Kombucha Tea SCOBY in the Treatment of Wastewater
Studying the production of Iron (Fe) nanoparticles using natural substances is an intriguing area of research in nanotechnology, as these nanoparticles possess biocompatibility and natural stability, which make them useful for a variety of industrial applications. The study utilized Fe nanoparticles...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572716/ https://www.ncbi.nlm.nih.gov/pubmed/37834177 http://dx.doi.org/10.3390/ijms241914731 |
Sumario: | Studying the production of Iron (Fe) nanoparticles using natural substances is an intriguing area of research in nanotechnology, as these nanoparticles possess biocompatibility and natural stability, which make them useful for a variety of industrial applications. The study utilized Fe nanoparticles that were synthesized using a bioflocculant and applied to eliminate different kinds of pollutants and dyes found in wastewater and solutions. The study involved the generation of Fe nanoparticles through a bioflocculant obtained from Pichia kudriavzevii, which were evaluated for their flocculation and antimicrobial capabilities. The impact of the Fe nanoparticles on human embryonic kidney (HEK 293) cell lines was studied to assess their potential cytotoxicity effects. An array of spectroscopic and microscopic methods was employed to characterize the biosynthesized Fe nanoparticles, including SEM-EDX, FT-IR, TEM, XRD, UV-vis, and TGA. A highly efficient flocculating activity of 85% was achieved with 0.6 mg/mL dosage of Fe nanoparticles. The biosynthesized Fe nanoparticles demonstrated a noteworthy concentration-dependent cytotoxicity effect on HEK 293 cell lines with the highest concentration used resulting in 34% cell survival. The Fe nanoparticles exhibited strong antimicrobial properties against a variety of evaluated Gram-positive and Gram-negative microorganisms. The efficiency of removing dyes by the nanoparticles was found to be higher than 65% for the tested dyes, with the highest being 93% for safranine. The Fe nanoparticles demonstrated remarkable efficiency in removing various pollutants from wastewater. In comparison to traditional flocculants and the bioflocculant, biosynthesized Fe nanoparticles possess significant potential for eliminating both biological oxygen demand (BOD) and chemical oxygen demand (COD) from wastewater samples treated. Hence, the Fe nanoparticles synthesized in this way have the potential to substitute chemical flocculants in the treatment of wastewater. |
---|