Cargando…
Adapted Deep Ensemble Learning-Based Voting Classifier for Osteosarcoma Cancer Classification
The study utilizes osteosarcoma hematoxylin and the Eosin-stained image dataset, which is unevenly dispersed, and it raises concerns about the potential impact on the overall performance and reliability of any analyses or models derived from the dataset. In this study, a deep-learning-based convolut...
Autores principales: | Walid, Md. Abul Ala, Mollick, Swarnali, Shill, Pintu Chandra, Baowaly, Mrinal Kanti, Islam, Md. Rabiul, Ahamad, Md. Martuza, Othman, Manal A., Samad, Md Abdus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572954/ https://www.ncbi.nlm.nih.gov/pubmed/37835898 http://dx.doi.org/10.3390/diagnostics13193155 |
Ejemplares similares
-
Cancer Classification Utilizing Voting Classifier with Ensemble Feature Selection Method and Transcriptomic Data
por: Khatun, Rabea, et al.
Publicado: (2023) -
An Ensemble Approach for the Prediction of Diabetes Mellitus Using a Soft Voting Classifier with an Explainable AI
por: Kibria, Hafsa Binte, et al.
Publicado: (2022) -
Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition
por: Islam, Md. Rabiul
Publicado: (2014) -
A voting approach to identify a small number of highly predictive genes using multiple classifiers
por: Hassan, Md Rafiul, et al.
Publicado: (2009) -
Adverse Effects of COVID-19 Vaccination: Machine Learning and Statistical Approach to Identify and Classify Incidences of Morbidity and Postvaccination Reactogenicity
por: Ahamad, Md. Martuza, et al.
Publicado: (2022)