Cargando…
Deep Learning to Predict the Cell Proliferation and Prognosis of Non-Small Cell Lung Cancer Based on FDG-PET/CT Images
(1) Background: Cell proliferation (Ki-67) has important clinical value in the treatment and prognosis of non-small cell lung cancer (NSCLC). However, current detection methods for Ki-67 are invasive and can lead to incorrect results. This study aimed to explore a deep learning classification model...
Autores principales: | Hu, Dehua, Li, Xiang, Lin, Chao, Wu, Yonggang, Jiang, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573026/ https://www.ncbi.nlm.nih.gov/pubmed/37835850 http://dx.doi.org/10.3390/diagnostics13193107 |
Ejemplares similares
-
FDG PET and CT radiomics in diagnosis and prognosis of non-small-cell lung cancer
por: Hannequin, Pascal, et al.
Publicado: (2022) -
Heart and bladder detection and segmentation on FDG PET/CT by deep learning
por: Wang, Xiaoyong, et al.
Publicado: (2022) -
The maximum standardized FDG uptake on PET-CT in patients with non-small cell lung cancer
por: Özgül, Mehmet Akif, et al.
Publicado: (2013) -
FDG PET/CT in the Staging of Lung Cancer
por: Farsad, Mohsen
Publicado: (2020) -
Anomaly detection in chest (18)F-FDG PET/CT by Bayesian deep learning
por: Nakao, Takahiro, et al.
Publicado: (2022)