Cargando…

Effects of Nanosecond Pulsed Electric Field (nsPEF) on a Multicellular Spheroid Tumor Model: Influence of Pulse Duration, Pulse Repetition Rate, Absorbed Energy, and Temperature

Cellular response upon nsPEF exposure depends on different parameters, such as pulse number and duration, the intensity of the electric field, pulse repetition rate (PRR), pulsing buffer composition, absorbed energy, and local temperature increase. Therefore, a deep insight into the impact of such p...

Descripción completa

Detalles Bibliográficos
Autores principales: Orlacchio, Rosa, Kolosnjaj-Tabi, Jelena, Mattei, Nicolas, Lévêque, Philippe, Rols, Marie Pierre, Arnaud-Cormos, Delia, Golzio, Muriel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573334/
https://www.ncbi.nlm.nih.gov/pubmed/37834447
http://dx.doi.org/10.3390/ijms241914999
_version_ 1785120437870526464
author Orlacchio, Rosa
Kolosnjaj-Tabi, Jelena
Mattei, Nicolas
Lévêque, Philippe
Rols, Marie Pierre
Arnaud-Cormos, Delia
Golzio, Muriel
author_facet Orlacchio, Rosa
Kolosnjaj-Tabi, Jelena
Mattei, Nicolas
Lévêque, Philippe
Rols, Marie Pierre
Arnaud-Cormos, Delia
Golzio, Muriel
author_sort Orlacchio, Rosa
collection PubMed
description Cellular response upon nsPEF exposure depends on different parameters, such as pulse number and duration, the intensity of the electric field, pulse repetition rate (PRR), pulsing buffer composition, absorbed energy, and local temperature increase. Therefore, a deep insight into the impact of such parameters on cellular response is paramount to adaptively optimize nsPEF treatment. Herein, we examined the effects of nsPEF ≤ 10 ns on long-term cellular viability and growth as a function of pulse duration (2–10 ns), PRR (20 and 200 Hz), cumulative time duration (1–5 µs), and absorbed electrical energy density (up to 81 mJ/mm(3) in sucrose-containing low-conductivity buffer and up to 700 mJ/mm(3) in high-conductivity HBSS buffer). Our results show that the effectiveness of nsPEFs in ablating 3D-grown cancer cells depends on the medium to which the cells are exposed and the PRR. When a medium with low-conductivity is used, the pulses do not result in cell ablation. Conversely, when the same pulse parameters are applied in a high-conductivity HBSS buffer and high PRRs are applied, the local temperature rises and yields either cell sensitization to nsPEFs or thermal damage.
format Online
Article
Text
id pubmed-10573334
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105733342023-10-14 Effects of Nanosecond Pulsed Electric Field (nsPEF) on a Multicellular Spheroid Tumor Model: Influence of Pulse Duration, Pulse Repetition Rate, Absorbed Energy, and Temperature Orlacchio, Rosa Kolosnjaj-Tabi, Jelena Mattei, Nicolas Lévêque, Philippe Rols, Marie Pierre Arnaud-Cormos, Delia Golzio, Muriel Int J Mol Sci Article Cellular response upon nsPEF exposure depends on different parameters, such as pulse number and duration, the intensity of the electric field, pulse repetition rate (PRR), pulsing buffer composition, absorbed energy, and local temperature increase. Therefore, a deep insight into the impact of such parameters on cellular response is paramount to adaptively optimize nsPEF treatment. Herein, we examined the effects of nsPEF ≤ 10 ns on long-term cellular viability and growth as a function of pulse duration (2–10 ns), PRR (20 and 200 Hz), cumulative time duration (1–5 µs), and absorbed electrical energy density (up to 81 mJ/mm(3) in sucrose-containing low-conductivity buffer and up to 700 mJ/mm(3) in high-conductivity HBSS buffer). Our results show that the effectiveness of nsPEFs in ablating 3D-grown cancer cells depends on the medium to which the cells are exposed and the PRR. When a medium with low-conductivity is used, the pulses do not result in cell ablation. Conversely, when the same pulse parameters are applied in a high-conductivity HBSS buffer and high PRRs are applied, the local temperature rises and yields either cell sensitization to nsPEFs or thermal damage. MDPI 2023-10-08 /pmc/articles/PMC10573334/ /pubmed/37834447 http://dx.doi.org/10.3390/ijms241914999 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Orlacchio, Rosa
Kolosnjaj-Tabi, Jelena
Mattei, Nicolas
Lévêque, Philippe
Rols, Marie Pierre
Arnaud-Cormos, Delia
Golzio, Muriel
Effects of Nanosecond Pulsed Electric Field (nsPEF) on a Multicellular Spheroid Tumor Model: Influence of Pulse Duration, Pulse Repetition Rate, Absorbed Energy, and Temperature
title Effects of Nanosecond Pulsed Electric Field (nsPEF) on a Multicellular Spheroid Tumor Model: Influence of Pulse Duration, Pulse Repetition Rate, Absorbed Energy, and Temperature
title_full Effects of Nanosecond Pulsed Electric Field (nsPEF) on a Multicellular Spheroid Tumor Model: Influence of Pulse Duration, Pulse Repetition Rate, Absorbed Energy, and Temperature
title_fullStr Effects of Nanosecond Pulsed Electric Field (nsPEF) on a Multicellular Spheroid Tumor Model: Influence of Pulse Duration, Pulse Repetition Rate, Absorbed Energy, and Temperature
title_full_unstemmed Effects of Nanosecond Pulsed Electric Field (nsPEF) on a Multicellular Spheroid Tumor Model: Influence of Pulse Duration, Pulse Repetition Rate, Absorbed Energy, and Temperature
title_short Effects of Nanosecond Pulsed Electric Field (nsPEF) on a Multicellular Spheroid Tumor Model: Influence of Pulse Duration, Pulse Repetition Rate, Absorbed Energy, and Temperature
title_sort effects of nanosecond pulsed electric field (nspef) on a multicellular spheroid tumor model: influence of pulse duration, pulse repetition rate, absorbed energy, and temperature
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573334/
https://www.ncbi.nlm.nih.gov/pubmed/37834447
http://dx.doi.org/10.3390/ijms241914999
work_keys_str_mv AT orlacchiorosa effectsofnanosecondpulsedelectricfieldnspefonamulticellularspheroidtumormodelinfluenceofpulsedurationpulserepetitionrateabsorbedenergyandtemperature
AT kolosnjajtabijelena effectsofnanosecondpulsedelectricfieldnspefonamulticellularspheroidtumormodelinfluenceofpulsedurationpulserepetitionrateabsorbedenergyandtemperature
AT matteinicolas effectsofnanosecondpulsedelectricfieldnspefonamulticellularspheroidtumormodelinfluenceofpulsedurationpulserepetitionrateabsorbedenergyandtemperature
AT levequephilippe effectsofnanosecondpulsedelectricfieldnspefonamulticellularspheroidtumormodelinfluenceofpulsedurationpulserepetitionrateabsorbedenergyandtemperature
AT rolsmariepierre effectsofnanosecondpulsedelectricfieldnspefonamulticellularspheroidtumormodelinfluenceofpulsedurationpulserepetitionrateabsorbedenergyandtemperature
AT arnaudcormosdelia effectsofnanosecondpulsedelectricfieldnspefonamulticellularspheroidtumormodelinfluenceofpulsedurationpulserepetitionrateabsorbedenergyandtemperature
AT golziomuriel effectsofnanosecondpulsedelectricfieldnspefonamulticellularspheroidtumormodelinfluenceofpulsedurationpulserepetitionrateabsorbedenergyandtemperature